NDT是将单个扫描的离散点集转换为空间上定义的分段连续可微概率密度,该概率密度由一组易于计算的正态分布组成的算法。采用NDT连续化后,传统硬离散优化问题能够潜在地转化为更易于处理的连续优化问题。
NDT原理
NDT将根据点云中点所处的位置,对整个点云利用一个正态分布函数来表示。这个过程主要利用拟牛顿法对参数估计,不断的迭代来获得最佳的拟合函数。再用拟合函数来进行配准,点集配准的目标是用两个点集数据来恢复这些参数,具体步骤如下: 1) 构建第一次扫描点集(即目标点集)的NDT; 2) 初始化参数估计值; 3) 对于第二次扫描(即变换集)的每个样本:根据参数将2D点集映射到第一次扫描点集的坐标系中; 4) 确定变换集每个映射点的相应正态分布; 5) 通过评估变换集映射点的分布并对结果求和来确定参数的分数; 6) 通过执行牛顿法,尝试优化分数来计算新的参数估计; 7) 转到3),直到满足收敛标准。
今天的文章 NDT(基于正态分布变换的配准算法)分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/102588.html