训练集,测试集和验证集

训练集,测试集和验证集在机器学习中 样本通常被分为训练集 验证集和测试集

     在机器学习和模式识别等领域中,一般需要将样本分成独立的三部分训练集(train set),验证集(validation set ) 和测试集(test set)。其中训练集用来估计模型,验证集用来确定网络结构或者控制模型复杂程度的参数,而测试集则检验最终选择最优的模型的性能如何。一个典型的划分是训练集占总样本的50%,而其它各占25%,三部分都是从样本中随机抽取。
验证集和测试集的区别在于:
       验证集用于进一步确定模型中的超参数(例如正则项系数、ANN中隐含层的节点个数等)而测试集只是用于评估模型的精确度(即泛化能力)!
编程小号
上一篇 2025-02-27 12:51
下一篇 2025-03-16 13:40

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/105067.html