1:两角和与差的几何证明
三角恒等式是数学中的基本恒等式,涉及三角函数。以下是一些常见的三角恒等式:
基本恒等式
- sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2 x = 1 sin2x+cos2x=1
- tan x = sin x cos x \tan x = \frac{\sin x}{\cos x} tanx=cosxsinx
- cot x = cos x sin x \cot x = \frac{\cos x}{\sin x} cotx=sinxcosx
两角和与差
- sin ( x + y ) = sin x cos y + cos x sin y \sin(x + y) = \sin x \cos y + \cos x \sin y sin(x+y)=sinxcosy+cosxsiny
- sin ( x − y ) = sin x cos y − cos x sin y \sin(x - y) = \sin x \cos y - \cos x \sin y sin(x−y)=sinxcosy−cosxsiny
- cos ( x + y ) = cos x cos y − sin x sin y \cos(x + y) = \cos x \cos y - \sin x \sin y cos(x+y)=cosxcosy−sinxsiny
- cos ( x − y ) = cos x cos y + sin x sin y \cos(x - y) = \cos x \cos y + \sin x \sin y cos(x−y)=cosxcosy+sinxsiny
- tan ( x + y ) = tan x + tan y 1 − tan x tan y \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} tan(x+y)=1−tanxtanytanx+tany
- tan ( x − y ) = tan x − tan y 1 + tan x tan y \tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y} tan(x−y)=1+tanxtanytanx−tany
双角恒等式
- sin 2 x = 2 sin x cos x \sin 2x = 2 \sin x \cos x sin2x=2sinxcosx
- cos 2 x = cos 2 x − sin 2 x \cos 2x = \cos^2 x - \sin^2 x cos2x=cos2x−sin2x
- cos 2 x = 2 cos 2 x − 1 \cos 2x = 2 \cos^2 x - 1 cos2x=2cos2x−1
- cos 2 x = 1 − 2 sin 2 x \cos 2x = 1 - 2 \sin^2 x cos2x=1−2sin2x
- tan 2 x = 2 tan x 1 − tan 2 x \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} tan2x=1−tan2x2tanx
半角恒等式
- sin 2 x = 1 − cos 2 x 2 \sin^2 x = \frac{1 - \cos 2x}{2} sin2x=21−cos2x
- cos 2 x = 1 + cos 2 x 2 \cos^2 x = \frac{1 + \cos 2x}{2} cos2x=21+cos2x
乘积到和
- sin x sin y = 1 2 [ cos ( x − y ) − cos ( x + y ) ] \sin x \sin y = \frac{1}{2}[\cos(x - y) - \cos(x + y)] sinxsiny=21[cos(x−y)−cos(x+y)]
- cos x cos y = 1 2 [ cos ( x − y ) + cos ( x + y ) ] \cos x \cos y = \frac{1}{2}[\cos(x - y) + \cos(x + y)] cosxcosy=21[cos(x−y)+cos(x+y)]
- sin x cos y = 1 2 [ sin ( x + y ) + sin ( x − y ) ] \sin x \cos y = \frac{1}{2}[\sin(x + y) + \sin(x - y)] sinxcosy=21[sin(x+y)+sin(x−y)]
这些恒等式在解决三角问题时非常有用,也是许多数学、物理和工程问题的基础。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/81643.html