各种三角形边长的计算公式

各种三角形边长的计算公式解直角三角形 斜三角形特殊情况 勾股定理 只适用于直角三角形 外国叫 毕达哥拉斯定理 a 2 b 2 c 2 其中 a 和 b 分别为直角三角形两直角边 c 为斜边

解直角三角形(斜三角形特殊情况):

勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。 勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,5。他们分别是3,4和5的倍数。 常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等。

解斜三角形:(小写字母为边长 大写字母为角度)

在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有

1)正弦定理:

\frac{a}{SIN(A)}=\frac{b}{SIN(B)}=\frac{c}{SIN(C)}=2R (R为三角形外接圆半径)

2)余弦定理:

                a^{2}=b^{2}+c^{2}-2bcCOS(A)
                b^{2}=a^{2}+c^{2}-2acCOS(B)
                c^{2}=a^{2}+b^{2}-2abCOS(C)
               注:勾股定理其实是余弦定理的一种特殊情况。

3)余弦定理变形公式 :

    COS(A)=\frac{b^{2}+c^{2}-a^{2}}{2bc}
               COS(B)=\frac{a^{2}+c^{2}-b^{2}}{2ac}
               COS(C)=\frac{a^{2}+b^{2}-c^{2}}{2ab}
斜三角形的解法:

已知条件 定理应用 一般解法:
一边和两角 (如a、B、C) 正弦定理 由A+B+C=180˙,求角A?
          由正弦定理求出b与c,在有解时 有一解。

两边和夹角 (如a、b、C) 余弦定理 由余弦定理求第三边c?
          由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有解时有一解。

三边 (如a、b、c) 余弦定理
          由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。
两边和其中一边的对角 (如a、b、A) 正弦定理 由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正 弦定理求出C边,可有两解、一解或无解。

今天的文章 各种三角形边长的计算公式分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2024-12-13 17:30
下一篇 2024-12-13 17:27

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/85195.html