ixy介绍
ixy是一个简单的用户空间数据包处理框架。它独占控制网络适配器,并在用户空间中实现整个驱动程序。它的架构类似于DPDK和Snabb,与netmap,pfq,pf_ring或XDP(所有这些都依赖于内核组件)等框架(看似相似)完全不同。事实上,阅读 DPDK 和 Snabb 驱动程序对于更好地理解英特尔 82599 数据表的某些部分至关重要。
与netmap,pfq,pf_ring的不同点如下:


ixy相关资料
ixy的Git仓库为 https://gitee.com/RSPwFPGAs/ixy.git
ixy的介绍文档为User Space Network Drivers (tum.de)
ixy示例ixy-fwd
ixy工程APP目录下的ixy-fwd示例程序的调用流程如下所示:

PCIE设备的用户态驱动初始化代码走查如下:

ixy代码展示
app目录下main函数所在文件ixy-fwd.c
const int BATCH_SIZE = 32; static void forward(struct ixy_device* rx_dev, uint16_t rx_queue, struct ixy_device* tx_dev, uint16_t tx_queue) { struct pkt_buf* bufs[BATCH_SIZE]; uint32_t num_rx = ixy_rx_batch(rx_dev, rx_queue, bufs, BATCH_SIZE); if (num_rx > 0) { // touch all packets, otherwise it's a completely unrealistic workload if the packet just stays in L3 for (uint32_t i = 0; i < num_rx; i++) { bufs[i]->data[1]++; } uint32_t num_tx = ixy_tx_batch(tx_dev, tx_queue, bufs, num_rx); // there are two ways to handle the case that packets are not being sent out: // either wait on tx or drop them; in this case it's better to drop them, otherwise we accumulate latency for (uint32_t i = num_tx; i < num_rx; i++) { pkt_buf_free(bufs[i]); } } } int main(int argc, char* argv[]) { if (argc != 3) { printf("%s forwards packets between two ports.\n", argv[0]); printf("Usage: %s <pci bus id2> <pci bus id1>\n", argv[0]); return 1; } struct ixy_device* dev1 = ixy_init(argv[1], 1, 1, -1); struct ixy_device* dev2 = ixy_init(argv[2], 1, 1, 0); while (true) { forward(dev1, 0, dev2, 0); forward(dev2, 0, dev1, 0); } } /* ixy-master/src/app/ixy-fwd.c */
APP调用API接口实现如下:
struct ixy_device* ixy_init(const char* pci_addr, uint16_t rx_queues, uint16_t tx_queues, int interrupt_timeout) { // Read PCI configuration space // For VFIO, we could access the config space another way // (VFIO_PCI_CONFIG_REGION_INDEX). This is not needed, though, because // every config file should be world-readable, and here we // only read the vendor and device id. int config = pci_open_resource(pci_addr, "config", O_RDONLY); uint16_t vendor_id = read_io16(config, 0); uint16_t device_id = read_io16(config, 2); uint32_t class_id = read_io32(config, 8) >> 24; close(config); if (class_id != 2) { error("Device %s is not a NIC", pci_addr); } if (vendor_id == 0x1af4 && device_id >= 0x1000) { return virtio_init(pci_addr, rx_queues, tx_queues); } else { // Our best guess is to try ixgbe return ixgbe_init(pci_addr, rx_queues, tx_queues, interrupt_timeout); } } /* ixy-master/src/driver/device.c */
// Public stubs that forward the calls to the driver-specific implementations static inline uint32_t ixy_rx_batch(struct ixy_device* dev, uint16_t queue_id, struct pkt_buf* bufs[], uint32_t num_bufs) { return dev->rx_batch(dev, queue_id, bufs, num_bufs); } /* ixy-master/src/driver/device.h */
API接口依赖的用户态驱动程序示例代码如下:
struct ixy_device* ixgbe_init(const char* pci_addr, uint16_t rx_queues, uint16_t tx_queues, int interrupt_timeout) { if (getuid()) { warn("Not running as root, this will probably fail"); } if (rx_queues > MAX_QUEUES) { error("cannot configure %d rx queues: limit is %d", rx_queues, MAX_QUEUES); } if (tx_queues > MAX_QUEUES) { error("cannot configure %d tx queues: limit is %d", tx_queues, MAX_QUEUES); } // Allocate memory for the ixgbe device that will be returned struct ixgbe_device* dev = (struct ixgbe_device*) malloc(sizeof(struct ixgbe_device)); dev->ixy.pci_addr = strdup(pci_addr); // Check if we want the VFIO stuff // This is done by checking if the device is in an IOMMU group. char path[PATH_MAX]; snprintf(path, PATH_MAX, "/sys/bus/pci/devices/%s/iommu_group", pci_addr); struct stat buffer; dev->ixy.vfio = stat(path, &buffer) == 0; if (dev->ixy.vfio) { // initialize the IOMMU for this device dev->ixy.vfio_fd = vfio_init(pci_addr); if (dev->ixy.vfio_fd < 0) { error("could not initialize the IOMMU for device %s", pci_addr); } } dev->ixy.driver_name = driver_name; dev->ixy.num_rx_queues = rx_queues; dev->ixy.num_tx_queues = tx_queues; dev->ixy.rx_batch = ixgbe_rx_batch; dev->ixy.tx_batch = ixgbe_tx_batch; dev->ixy.read_stats = ixgbe_read_stats; dev->ixy.set_promisc = ixgbe_set_promisc; dev->ixy.get_link_speed = ixgbe_get_link_speed; dev->ixy.get_mac_addr = ixgbe_get_mac_addr; dev->ixy.set_mac_addr = ixgbe_set_mac_addr; dev->ixy.interrupts.interrupts_enabled = interrupt_timeout != 0; // 0x028 (10ys) => 97600 INT/s dev->ixy.interrupts.itr_rate = 0x028; dev->ixy.interrupts.timeout_ms = interrupt_timeout; if (!dev->ixy.vfio && interrupt_timeout != 0) { warn("Interrupts requested but VFIO not available: Disabling Interrupts!"); dev->ixy.interrupts.interrupts_enabled = false; } // Map BAR0 region if (dev->ixy.vfio) { debug("mapping BAR0 region via VFIO..."); dev->addr = vfio_map_region(dev->ixy.vfio_fd, VFIO_PCI_BAR0_REGION_INDEX); // initialize interrupts for this device setup_interrupts(dev); } else { debug("mapping BAR0 region via pci file..."); dev->addr = pci_map_resource(pci_addr); } dev->rx_queues = calloc(rx_queues, sizeof(struct ixgbe_rx_queue) + sizeof(void*) * MAX_RX_QUEUE_ENTRIES); dev->tx_queues = calloc(tx_queues, sizeof(struct ixgbe_tx_queue) + sizeof(void*) * MAX_TX_QUEUE_ENTRIES); reset_and_init(dev); return &dev->ixy; } /* ixy-master/src/driver/ixgbe.c*/
uint32_t ixgbe_rx_batch(struct ixy_device* ixy, uint16_t queue_id, struct pkt_buf* bufs[], uint32_t num_bufs) { struct ixgbe_device* dev = IXY_TO_IXGBE(ixy); struct interrupt_queues* interrupt = NULL; bool interrupts_enabled = ixy->interrupts.interrupts_enabled; if (interrupts_enabled) { interrupt = &ixy->interrupts.queues[queue_id]; } if (interrupts_enabled && interrupt->interrupt_enabled) { vfio_epoll_wait(interrupt->vfio_epoll_fd, 10, dev->ixy.interrupts.timeout_ms); } struct ixgbe_rx_queue* queue = ((struct ixgbe_rx_queue*) (dev->rx_queues)) + queue_id; uint16_t rx_index = queue->rx_index; // rx index we checked in the last run of this function uint16_t last_rx_index = rx_index; // index of the descriptor we checked in the last iteration of the loop uint32_t buf_index; for (buf_index = 0; buf_index < num_bufs; buf_index++) { // rx descriptors are explained in 7.1.5 volatile union ixgbe_adv_rx_desc* desc_ptr = queue->descriptors + rx_index; uint32_t status = desc_ptr->wb.upper.status_error; if (status & IXGBE_RXDADV_STAT_DD) { if (!(status & IXGBE_RXDADV_STAT_EOP)) { error("multi-segment packets are not supported - increase buffer size or decrease MTU"); } // got a packet, read and copy the whole descriptor union ixgbe_adv_rx_desc desc = *desc_ptr; struct pkt_buf* buf = (struct pkt_buf*) queue->virtual_addresses[rx_index]; buf->size = desc.wb.upper.length; // this would be the place to implement RX offloading by translating the device-specific flags // to an independent representation in the buf (similiar to how DPDK works) // need a new mbuf for the descriptor struct pkt_buf* new_buf = pkt_buf_alloc(queue->mempool); if (!new_buf) { // we could handle empty mempools more gracefully here, but it would be quite messy... // make your mempools large enough error("failed to allocate new mbuf for rx, you are either leaking memory or your mempool is too small"); } // reset the descriptor desc_ptr->read.pkt_addr = new_buf->buf_addr_phy + offsetof(struct pkt_buf, data); desc_ptr->read.hdr_addr = 0; // this resets the flags queue->virtual_addresses[rx_index] = new_buf; bufs[buf_index] = buf; // want to read the next one in the next iteration, but we still need the last/current to update RDT later last_rx_index = rx_index; rx_index = wrap_ring(rx_index, queue->num_entries); } else { break; } } if (rx_index != last_rx_index) { // tell hardware that we are done // this is intentionally off by one, otherwise we'd set RDT=RDH if we are receiving faster than packets are coming in // RDT=RDH means queue is full set_reg32(dev->addr, IXGBE_RDT(queue_id), last_rx_index); queue->rx_index = rx_index; } if (interrupts_enabled) { interrupt->rx_pkts += buf_index; if ((interrupt->instr_counter++ & 0xFFF) == 0) { bool int_en = interrupt->interrupt_enabled; uint64_t diff = monotonic_time() - interrupt->last_time_checked; if (diff > interrupt->interval) { // every second check_interrupt(interrupt, diff, buf_index, num_bufs); } if (int_en != interrupt->interrupt_enabled) { if (interrupt->interrupt_enabled) { enable_interrupt(dev, queue_id); } else { disable_interrupt(dev, queue_id); } } } } return buf_index; // number of packets stored in bufs; buf_index points to the next index } /* ixy-master/src/driver/ixgbe.c */
// section 1.8.1 and 7.2 // we control the tail, hardware the head // huge performance gains possible here by sending packets in batches - writing to TDT for every packet is not efficient // returns the number of packets transmitted, will not block when the queue is full uint32_t ixgbe_tx_batch(struct ixy_device* ixy, uint16_t queue_id, struct pkt_buf* bufs[], uint32_t num_bufs) { struct ixgbe_device* dev = IXY_TO_IXGBE(ixy); struct ixgbe_tx_queue* queue = ((struct ixgbe_tx_queue*)(dev->tx_queues)) + queue_id; // the descriptor is explained in section 7.2.3.2.4 // we just use a struct copy & pasted from intel, but it basically has two formats (hence a union): // 1. the write-back format which is written by the NIC once sending it is finished this is used in step 1 // 2. the read format which is read by the NIC and written by us, this is used in step 2 uint16_t clean_index = queue->clean_index; // next descriptor to clean up // step 1: clean up descriptors that were sent out by the hardware and return them to the mempool // start by reading step 2 which is done first for each packet // cleaning up must be done in batches for performance reasons, so this is unfortunately somewhat complicated while (true) { // figure out how many descriptors can be cleaned up int32_t cleanable = queue->tx_index - clean_index; // tx_index is always ahead of clean (invariant of our queue) if (cleanable < 0) { // handle wrap-around cleanable = queue->num_entries + cleanable; } if (cleanable < TX_CLEAN_BATCH) { break; } // calculcate the index of the last transcriptor in the clean batch // we can't check all descriptors for performance reasons int32_t cleanup_to = clean_index + TX_CLEAN_BATCH - 1; if (cleanup_to >= queue->num_entries) { cleanup_to -= queue->num_entries; } volatile union ixgbe_adv_tx_desc* txd = queue->descriptors + cleanup_to; uint32_t status = txd->wb.status; // hardware sets this flag as soon as it's sent out, we can give back all bufs in the batch back to the mempool if (status & IXGBE_ADVTXD_STAT_DD) { int32_t i = clean_index; while (true) { struct pkt_buf* buf = queue->virtual_addresses[i]; pkt_buf_free(buf); if (i == cleanup_to) { break; } i = wrap_ring(i, queue->num_entries); } // next descriptor to be cleaned up is one after the one we just cleaned clean_index = wrap_ring(cleanup_to, queue->num_entries); } else { // clean the whole batch or nothing; yes, this leaves some packets in // the queue forever if you stop transmitting, but that's not a real concern break; } } queue->clean_index = clean_index; // step 2: send out as many of our packets as possible uint32_t sent; for (sent = 0; sent < num_bufs; sent++) { uint32_t next_index = wrap_ring(queue->tx_index, queue->num_entries); // we are full if the next index is the one we are trying to reclaim if (clean_index == next_index) { break; } struct pkt_buf* buf = bufs[sent]; // remember virtual address to clean it up later queue->virtual_addresses[queue->tx_index] = (void*) buf; volatile union ixgbe_adv_tx_desc* txd = queue->descriptors + queue->tx_index; queue->tx_index = next_index; // NIC reads from here txd->read.buffer_addr = buf->buf_addr_phy + offsetof(struct pkt_buf, data); // always the same flags: one buffer (EOP), advanced data descriptor, CRC offload, data length txd->read.cmd_type_len = IXGBE_ADVTXD_DCMD_EOP | IXGBE_ADVTXD_DCMD_RS | IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT | IXGBE_ADVTXD_DTYP_DATA | buf->size; // no fancy offloading stuff - only the total payload length // implement offloading flags here: // * ip checksum offloading is trivial: just set the offset // * tcp/udp checksum offloading is more annoying, you have to precalculate the pseudo-header checksum txd->read.olinfo_status = buf->size << IXGBE_ADVTXD_PAYLEN_SHIFT; } // send out by advancing tail, i.e., pass control of the bufs to the nic // this seems like a textbook case for a release memory order, but Intel's driver doesn't even use a compiler barrier here set_reg32(dev->addr, IXGBE_TDT(queue_id), queue->tx_index); return sent; } /* ixy-master/src/driver/ixgbe.c */
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/85475.html