实数
我们想象到的数差不多都是实数。
实数包括:
-
整数 : 像 0、1、2、3、-1、-2 等等。
-
有理数: 像 3/4、0.125、0.333……、1.1 等等。
-
无理数:想 π , √2 等等。
什么不是实数:
-
虚数: 像 √−1 。
-
无穷大
实数直线(用几何直线来描述实数):
实数是相对虚数来说的,直到有虚数后,才把非虚数叫做实数。
虚数
虚数的定义:虚数的平方是负数。如:
但是,正数的平方是正数、负数的平方也是正数,也就是一个数的平方永远是正数或零。
那么虚数有什么用?可以用来做什么?
我们可以假设有这样的数,称之为 i:
i * i = -1
两边开平方根得到
也就是 i 是 -1 的平方根。
如果我们接受了 i 的存在,就可以解答很多牵涉到负数平方根的问题了。
例子:-9的平方根是多少?
解答:
√−9
= √(9 × −1) = √(9) × √(−1) = 3 × √(−1) = 3i
所以,负数的平方根等于该数为正时的平方根乘以 i:
√(−x) = i√x
有了虚数后,我们就可以解开一些之前无法求解的方程。
例子:解
x^
2
= −1。
解:
x = ± √(−1)
x = ± i
检验结果:
(−i)2 = (−i)(−i) = +i2 = −1
(+i)2 = (+i)(+i) = +i2 = −1
实数的“单位”是 1,虚数的“单位”是 √(−1),在数学中用 i 表示虚数。
虚数的用处?
虚数和实数结合在一起成为了复数,复数的用途非常广大。
虚数有趣的属性
虚数单位 i
有个有趣的属性。它自乘的积在四个答案里"循环重复":
结论:
虚数不是"虚"幻的,它实际存在,并且非常有用。
复数
复数是实数和虚数的组合:
如: 1 + i、 39 + 3i、 0.8 − 2.2i、
−2 +
π
i、
√2 + i/2
注意:复数是两个数加起来的,一个是实数部分,一个是虚数部分。
但这两部分都可以是
0
,所以所有实数和虚数都是复数。
复数的直观解释
实数直线是从
左向右
的,
虚数就是从上到下,
复数平面
:
一个复数是在复数平面上的一点:
复数的加法
(a+bi) + (c+di) = (a+c) + (b+d)i
例子:3 + 5i 加 4 − 3i
复数的乘法
(a+bi)(c+di) = ac + adi + bci + bdi^2
简便计算:
(a+bi)(c+di) = (ac−bd) + (ad+bc)i
共轭
复数的除法需要用到共轭。
共轭是把中间的正负号改变,像这样
共轭的一般符号是上面放一条横线:
5 − 3i = 5 + 3i
复数的除法
技巧是把
上面和下面
都乘以
下面的共轭
。
例子:
解:
简便计算:
(a + bi)(a − bi) = a^2 + b^2
解:
复数的用处?
1)频谱分析仪:
播放音乐时时常会看到的频谱显示就是用复数计算出来的,使用的数学技巧叫 "傅里叶变换"。
2)电学:
当我们把两个不对称的交流电合并时,计算合并后的电流是
非常困难
的。
但是,利用复数就可以使得计算简单很多。
3)
曼德勃罗特集:
美丽的曼德勃罗特集是基于复数的。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/86174.html