内存池——第一章 几种常用的内存池技术

内存池——第一章 几种常用的内存池技术几乎所有应用程序中都会有内存的分配和释放 而频繁的分配和释放内存无疑会产生内存碎片 降低系统性能 尤其对性能要求较高的程序比较明显

几乎所有应用程序中都会有内存的分配和释放,而频繁的分配和释放内存无疑会产生内存碎片,降低系统性能,尤其对性能要求较高的程序比较明显。下面介绍几种常见的内存池技术。

    一  环形缓存

    环形缓存的基本原理如图:
    初始化状态(wpos_ = rpos_):

    写了部分数据,同时读了一部分数据(wpos_ > rpos_):

    wpos_写数据到尾部后,又从头开始,rpos_还读到尾部(wpos_ < rpos_):

    rpos_读了N(N>= 1)圈后,赶上了wpos_,也就是说没有数据可读了(wpos_ < rpos_):

   综合起来,看起来像这样子:

 需要注意的是:
    #1    wpos_ < rpos_的情况下,rpos_ 读数据一直读到尾部,然后又从头部开始,数据拼接一块即可;
    #2    如果 | wpos_ -  rpos |  < cnt,即没有足够的数据可来写的时候,需要重写分配内存,具体分配多少,根据你的程序来定,额外大小或者1.5倍原大小;
    部分实现代码如下:

(此处)折叠或打开

  1. #define EXTRA_BUFFER_SIZE        64

  2. namespace easy
  3. {
  4.     template<class _Type,class _Alloc >
  5.     class EasyRingbuffer 
  6.     {
  7.     public:
  8.         typedef _Alloc allocator_type;

  9.         explicit EasyRingbuffer(size_t size):
  10.         size_(size),
  11.             wpos_(0),
  12.             rpos_(0)
  13.         {
  14.             buffer_ = _allocate(size_);
  15.         }

  16.         ~EasyRingbuffer() {  _deallocate(buffer_,size_); }

  17.         template<typename T> void append(T val) 
  18.         {  
  19.             append((easy_uint8*)&val,sizeof(val));
  20.         }

  21.         void append(const easy_uint8* src, size_t cnt)
  22.         {
  23.             if (!cnt)
  24.             {
  25.                 return;
  26.             }

  27.             //    case 1: rpos_ <= wpos_
  28.             if (rpos_ <= wpos_)
  29.             {
  30.                 if (size_ - wpos_ >= cnt)
  31.                 {
  32.                     memmove(buffer_ + wpos_,src,cnt);
  33.                     wpos_ += cnt;
  34.                     return;
  35.                 }
  36.                 else
  37.                 {
  38.                     if (size_ - wpos_ + rpos_ > cnt)    // >= is ok>
  39.                     {
  40.                         memmove(buffer_ + wpos_, src, size_ - wpos_);
  41.                         memmove(buffer_, src + size_ - wpos_, cnt - (size_ - wpos_));
  42.                         wpos_ = cnt - (size_ - wpos_);
  43.                         return;
  44.                     }
  45.                     else
  46.                     {
  47.                         _Type* new_buffer = _allocate(size_ + cnt - (size_ - wpos_));
  48.                         memmove(new_buffer,buffer_,wpos_);
  49.                         memmove(new_buffer + wpos_, src, cnt);
  50.                         _deallocate(buffer_,size_);
  51.                         size_ = size_ + cnt - (size_ - wpos_);
  52.                         wpos_ += cnt;
  53.                         buffer_ = new_buffer;
  54.                         return;
  55.                     }
  56.                 }
  57.             }
  58.             //    case 2: rpos_ > wpos_ 
  59.             else if(rpos_ > wpos_)
  60.             {
  61.                 if (rpos_ - wpos_ > cnt)    // >= is ok ?
  62.                 {
  63.                     if (rpos_ - wpos_ > cnt)
  64.                     {
  65.                         memmove(buffer_ + wpos_,src,cnt);
  66.                         wpos_ += cnt;
  67.                         return;
  68.                     }
  69.                     else
  70.                     {
  71.                         _Type* new_buffer = _allocate(size_ + cnt - (rpos_ - wpos_) + EXTRA_BUFFER_SIZE);
  72.                         memmove(new_buffer,buffer_,wpos_);
  73.                         memmove(new_buffer + wpos_,src,cnt);
  74.                         memmove(new_buffer + wpos_ + cnt - (rpos_ - wpos_) + EXTRA_BUFFER_SIZE,buffer_ + rpos_,size_ - rpos_);
  75.                         _deallocate(buffer_,size_);
  76.                         rpos_ += cnt - (rpos_ - wpos_) + EXTRA_BUFFER_SIZE;
  77.                         wpos_ += cnt;
  78.                         size_ = size_ + cnt - (rpos_ - wpos_) + EXTRA_BUFFER_SIZE;
  79.                         buffer_ = new_buffer;
  80.                         return;
  81.                     }
  82.                 }
  83.             }
  84.         }

  85.         EasyRingbuffer& operator << (easy_bool val)
  86.         {
  87.             append<easy_bool>(val);
  88.             return *this;
  89.         }

  90.         EasyRingbuffer& operator << (easy_uint8 val)
  91.         {
  92.             append<easy_uint8>(val);
  93.             return *this;
  94.         }

  95.         EasyRingbuffer& operator << (easy_uint16 val)
  96.         {
  97.             append<easy_uint16>(val);
  98.             return *this;
  99.         }

  100.         EasyRingbuffer& operator << (easy_uint32 val)
  101.         {
  102.             append<easy_uint32>(val);
  103.             return *this;
  104.         }

  105.         EasyRingbuffer& operator << (easy_uint64 val)
  106.         {
  107.             append<easy_uint64>(val);
  108.             return *this;
  109.         }

  110.         EasyRingbuffer& operator << (easy_int8 val)
  111.         {
  112.             append<easy_int8>(val);
  113.             return *this;
  114.         }

  115.         EasyRingbuffer& operator << (easy_int16 val)
  116.         {
  117.             append<easy_int16>(val);
  118.             return *this;
  119.         }

  120.         EasyRingbuffer& operator << (easy_int32 val)
  121.         {
  122.             append<easy_int32>(val);
  123.             return *this;
  124.         }

  125.         EasyRingbuffer& operator << (easy_int64 val)
  126.         {
  127.             append<easy_int64>(val);
  128.             return *this;
  129.         }

  130.         EasyRingbuffer& operator << (easy_float val)
  131.         {
  132.             append<easy_float>(val);
  133.             return *this;
  134.         }

  135.         EasyRingbuffer& operator << (easy_double val)
  136.         {
  137.             append<easy_double>(val);
  138.             return *this;
  139.         }

  140.         EasyRingbuffer& operator << (const std::string& val)
  141.         {
  142.             append((easy_uint8 const*)val.c_str(),val.length());
  143.             return *this;
  144.         }

  145.         EasyRingbuffer& operator << (const char* val)
  146.         {
  147.             append((easy_uint8 const *)val, val ? strlen(val) : 0);
  148.             return *this;
  149.         }

  150.         template<typename T> T read() 
  151.         {
  152.             T r;
  153.             read((easy_uint8*)&r,sizeof(T));
  154.             return r;
  155.         }

  156.         void read(easy_uint8* des,size_t len)
  157.         {
  158.             if (_read_finish())
  159.             {
  160.                 return;
  161.             }
  162.             if (rpos_ < wpos_)
  163.             {
  164.                 if (wpos_ - rpos_ >= len)
  165.                 {
  166.                     memmove(des,buffer_ + rpos_,len);
  167.                     rpos_ += len;
  168.                 }
  169.                 //    else just skip
  170.             }
  171.             else if (rpos_ > wpos_)
  172.             {
  173.                 if (size_ - rpos_ >= len)
  174.                 {
  175.                     memmove(des,buffer_ + rpos_,len);
  176.                     rpos_ += len;
  177.                 }
  178.                 else
  179.                 {
  180.                     memmove(des,buffer_ + rpos_, size_ - rpos_);
  181.                     memmove(des + size_ - rpos_, buffer_, len - (size_ - rpos_));
  182.                     rpos_ = len - (size_ - rpos_);
  183.                 }
  184.             }
  185.         }

  186.         EasyRingbuffer& operator >> (easy_bool& val)
  187.         {
  188.             val = read<easy_bool>();
  189.             return *this;
  190.         }

  191.         EasyRingbuffer& operator >> (easy_uint8& val)
  192.         {
  193.             val = read<easy_uint8>();
  194.             return *this;
  195.         }

  196.         EasyRingbuffer& operator >> (easy_uint16& val)
  197.         {
  198.             val = read<easy_uint16>();
  199.             return *this;
  200.         }

  201.         EasyRingbuffer& operator >> (easy_uint32& val)
  202.         {
  203.             val = read<easy_uint32>();
  204.             return *this;
  205.         }

  206.         EasyRingbuffer& operator >> (easy_uint64& val)
  207.         {
  208.             val = read<easy_uint64>();
  209.             return *this;
  210.         }

  211.         EasyRingbuffer& operator >> (easy_int8& val)
  212.         {
  213.             val = read<easy_int8>();
  214.             return *this;
  215.         }

  216.         EasyRingbuffer& operator >> (easy_int16& val)
  217.         {
  218.             val = read<easy_int16>();
  219.             return *this;
  220.         }

  221.         EasyRingbuffer& operator >> (easy_int32& val)
  222.         {
  223.             val = read<easy_int32>();
  224.             return *this;
  225.         }

  226.         EasyRingbuffer& operator >> (easy_int64& val)
  227.         {
  228.             val = read<easy_int64>();
  229.             return *this;
  230.         }

  231.         EasyRingbuffer& operator >> (easy_float& val)
  232.         {
  233.             val = read<easy_float>();
  234.             return *this;
  235.         }

  236.         EasyRingbuffer& operator >> (easy_double& val)
  237.         {
  238.             val = read<easy_double>();
  239.             return *this;
  240.         }

  241.         size_t size() const {  return size_; }

  242.         size_t rpos() const {  return rpos_; }

  243.         size_t wpos() const {  return wpos_; }

  244.     private:
  245.         _Type* _allocate(size_t size) 
  246.         {  
  247.             _Type* res = 0;
  248.             res = static_cast<_Type*>(alloc_type_.allocate(size)); 
  249.             return res;
  250.         }

  251.         void _deallocate(void* p,size_t size) 
  252.         {  
  253.             alloc_type_.deallocate(p,size); 
  254.         }

  255.         void _reallocate(void* p,size_t old_size,size_t new_size) {  alloc_type_.reallocate(p,old_size,new_size); }

  256.         easy_bool _read_finish() {  return wpos_ == rpos_; }

  257.     private:
  258.         EasyRingbuffer ( const EasyRingbuffer& );
  259.         EasyRingbuffer& operator = ( const EasyRingbuffer& );
  260.     private:
  261.         size_t            size_;

  262.         _Type*            buffer_;

  263.         size_t            wpos_;

  264.         size_t            rpos_;

  265.         allocator_type    alloc_type_;
  266.     };
  267. }
 
  二 空闲列表

    空闲列表的原理比较简单,一般用于比较大的对象,可预分配一定数量的对象,需要时直接空闲列表中取,使用完后收回,如果空闲列表中已空,则需要重新设置大小了;也可使用时分配,使用完后收回。实现代码如下:

(此处)折叠或打开

  1. // use stl
  2.     template<typename _Type, typename _Lock,typename _StorageType /*= std::list<_Type*>*/>
  3.     class lock_queue     
  4.     {
  5.         typedef typename _Type::_Key                _Key;

  6.         static const size_t MAX_POOL_SIZE = _Type::MAX_POOL_SIZE;

  7.     public:
  8.         _Type* allocate(_Key __key)
  9.         {
  10.             _Type* __ret = 0;
  11.             if (free_list_.empty())
  12.             {
  13.                 __ret = new _Type(__key);
  14.             }
  15.             else
  16.             {
  17.                 lock_.acquire_lock();
  18.                 __ret = free_list_.back();
  19.                 free_list_.pop_back();
  20.                 lock_.release_lock();
  21.             }
  22.             return __ret;
  23.         }

  24.         void deallcate(_Type* __val)
  25.         {
  26.             if (!__val)
  27.             {
  28.                 return;
  29.             }
  30.             if (MAX_POOL_SIZE < free_list_.size())
  31.             {
  32.                 delete __val;
  33.                 return;
  34.             }
  35.             lock_.acquire_lock();
  36.             free_list_.push_back(__val);
  37.             lock_.release_lock();
  38.         }

  39.         size_t free_size() /*const*/ 
  40.         {  
  41.             size_t __size = 0;
  42.             lock_.acquire_lock(); 
  43.             __size = free_list_.size(); 
  44.             lock_.release_lock();
  45.             return __size;
  46.         }

  47.         void clear() 
  48.         {  
  49.             lock_.acquire_lock(); 
  50.             for (typename _StorageType::iterator __it = free_list_.begin(); __it != free_list_.end(); ++__it)
  51.             {
  52.                 if ((*__it))
  53.                 {
  54.                     delete (*__it);
  55.                     (*__it) = NULL;
  56.                 }
  57.             }
  58.             free_list_.clear(); 
  59.             _StorageType().swap(free_list_); 
  60.             lock_.release_lock();
  61.         }

  62.         ~lock_queue()
  63.         {
  64.             clear();
  65.         }
  66.     private:
  67.         _Lock                        lock_;
  68.         _StorageType                free_list_;
  69.     };

(此处)折叠或打开

  1. //anther way,use use stl
  2. template < typename T, int DEFAULT_BLOCK_NUM = 1024 >
  3. class CMemoryPool 
  4. {
  5. public:
  6.     static VOID* operator new ( std::size_t nAllocLength )
  7.     {
  8.         Assert( sizeof(T) == nAllocLength ); 
  9.         Assert( sizeof(T) >= sizeof(UCHAR*) );
  10.         if ( !m_sNewPointer )
  11.         {
  12.             allocBlock();
  13.         }
  14.         UCHAR* ucReturnPointer = m_sNewPointer;
  15.         //the head of 4 bytes is explain the next pointer of memory force,
  16.         //and m_NewPointer just point the next block of memory,when used the next allocation
  17.         m_sNewPointer = *reinterpret_cast<UCHAR**>( ucReturnPointer);
  18.         return ucReturnPointer;
  19.     }

  20.     static VOID operator delete( void* vpDeletePointer )
  21.     {
  22.         *reinterpret_cast<UCHAR**>( vpDeletePointer) = m_sNewPointer;    
  23.         m_sNewPointer = static_cast<UCHAR*>(vpDeletePointer);
  24.     }

  25.     static VOID allocBlock()
  26.     {
  27.         m_sNewPointer = new UCHAR[sizeof(T) * DEFAULT_BLOCK_NUM]; 
  28.         //casting dual pointer force,that will change the meaning of the head of 4 byte memory 
  29.         UCHAR **ppCurent = reinterpret_cast<UCHAR**>( m_sNewPointer ); 
  30.         UCHAR *ppNext = m_sNewPointer; 
  31.         for( int i = 0; i < DEFAULT_BLOCK_NUM-1; i++ ) 
  32.         {
  33.             ppNext += sizeof(T); 
  34.             *ppCurent = ppNext; 
  35.             //the head of 4 bytes is explain the next pointer of memory force,a memory list in form. 
  36.             ppCurent = reinterpret_cast<UCHAR**>( ppNext ); 
  37.         }
  38.         //if the last memory bock, the head of 4 byte is null
  39.         *ppCurent = 0; 
  40.     }

  41. protected:
  42.     virtual ~CMemoryPool()
  43.     {

  44.     }
  45. private:
  46.     static UCHAR *m_sNewPointer; 
  47. };

  48. template<class T, int BLOCK_NUM > 
  49. UCHAR *CMemoryPool<T, BLOCK_NUM >::m_sNewPointer;

    三  stl的二级分配器

    stl内部实现的分配器分两种情况:一种是大于128byte的分配,直接使用系统的内存分配函数malloc/free;另外一种为小于128byte的,也就是上面说的二级分配器,它采用了某些技术来管来内存,避免频繁分配释放。简单的说,就是将内存按8字节对齐,分别建立固定值倍数大小的内存池,如8, 8*2 ,8*3..., 当需要分配内存时,根据分配内存的大小,算出所需内存大小的内存池索引,然后根据这个索引找到那块内存池,并从中取出一块返回;同样,内存使用完后,按类似的方法回收。这种方案一般适用于比较小的内存分配的情况,大的可以考虑其他的方案。其流程如下:


下面是具体代码:

(此处)折叠或打开

  1. template< bool threads, int inst >
  2.     class __default_alloc_template
  3.     {
  4.         enum { _ALIGN = 8};
  5.         enum { _MAX_BYTES = 128};
  6.         enum { _NFREELISTS = 16}; // _MAX_BYTES/_ALIGN
  7.     
  8.         static size_t _S_round_up(size_t __bytes) {  return (((__bytes) + (size_t) _ALIGN-1) & ~((size_t) _ALIGN - 1)); }

  9.         static size_t _S_freelist_index(size_t __bytes) {  return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1); }

  10.         union _Obj 
  11.         {
  12.             union _Obj* _M_free_list_link;
  13.             char _M_client_data[1]; /* The client sees this. */
  14.         };
  15.         static _Obj* volatile _S_free_list[_NFREELISTS]; 

  16.         // Returns an object of size __n, and optionally adds to size __n free list.
  17.         static void* _S_refill(size_t __n);

  18.         // Allocates a chunk for nobjs of size size. nobjs may be reduced
  19.         // if it is inconvenient to allocate the requested number.
  20.         static char* _S_chunk_alloc(size_t __size, int& __nobjs);

  21.         static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz);

  22.         // Chunk allocation state.
  23.         static char*    _S_start_free;
  24.         static char*    _S_end_free;
  25.         static size_t    _S_heap_size;

  26.     public:
  27.         static void* allocate(size_t __n)
  28.         {
  29.             void* __ret = 0;
  30.             if (__n > (size_t) _MAX_BYTES) 
  31.             {
  32.                 __ret = malloc_alloc::allocate(__n);
  33.             }
  34.             else
  35.             {
  36.                 mutex_lock    __lock;
  37.                 __lock.acquire_lock();
  38.                 _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__n);
  39.                 _Obj* volatile __result = *__my_free_list;
  40.                 if (__result == 0)
  41.                 {
  42.                     __ret = _S_refill(_S_round_up(__n));
  43.                 }
  44.                 else 
  45.                 {
  46.                     *__my_free_list = __result -> _M_free_list_link;
  47.                     __ret = __result;
  48.                 }
  49.                 __lock.release_lock();
  50.             }
  51.             return __ret;
  52.         }

  53.         /* __p may not be 0 */
  54.         static void deallocate(void* __p, size_t __n)
  55.         {
  56.             if (__n > (size_t) _MAX_BYTES)
  57.             {
  58.                  malloc_alloc::deallocate(__p, __n);
  59.             }
  60.             else 
  61.             {
  62.                 mutex_lock    __lock;
  63.                 __lock.acquire_lock();
  64.                  _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__n);
  65.                  _Obj* __q = (_Obj*)__p;
  66.                  __q -> _M_free_list_link = *__my_free_list;
  67.                  *__my_free_list = __q;
  68.                  __lock.release_lock();
  69.             }
  70.         }
  71.     };

  72.     template <bool __threads, int __inst>
  73.     inline bool operator==(const __default_alloc_template<__threads, __inst>&,
  74.         const __default_alloc_template<__threads, __inst>&)
  75.     {
  76.         return true;
  77.     }

  78.     template <bool __threads, int __inst>
  79.     inline bool operator!=(const __default_alloc_template<__threads, __inst>&,
  80.         const __default_alloc_template<__threads, __inst>&)
  81.     {
  82.         return false;
  83.     }

  84.     /* We allocate memory in large chunks in order to avoid fragmenting */
  85.     /* the malloc heap too much. */
  86.     /* We assume that size is properly aligned. */
  87.     /* We hold the allocation lock. */
  88.     template <bool __threads, int __inst>
  89.     char*    __default_alloc_template<__threads, __inst>::_S_chunk_alloc(size_t __size, int& __nobjs)
  90.     {
  91.         //::_set_new_handler(_out_of_memory);
  92.         char* __result;
  93.         size_t __total_bytes = __size * __nobjs;
  94.         size_t __bytes_left = _S_end_free - _S_start_free;
  95.         //    enough memory to alloc
  96.         if (__bytes_left >= __total_bytes) 
  97.         {
  98.             __result = _S_start_free;
  99.             _S_start_free += __total_bytes;
  100.             return(__result);
  101.         } 
  102.         //    only more than __size can be alloc
  103.         else if (__bytes_left >= __size) 
  104.         {
  105.             __nobjs = (int)(__bytes_left/__size);
  106.             __total_bytes = __size * __nobjs;
  107.             __result = _S_start_free;
  108.             _S_start_free += __total_bytes;
  109.             return(__result);
  110.         } 
  111.         else 
  112.         {
  113.             size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
  114.             // Try to make use of the left-over piece.
  115.             if (__bytes_left > 0) 
  116.             {
  117.                 _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__bytes_left);
  118.                 ((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list;
  119.                 *__my_free_list = (_Obj*)_S_start_free;
  120.             }
  121.             //    alloc __bytes_to_get again
  122.             _S_start_free = (char*)malloc(__bytes_to_get);

  123.             //    alloc failed
  124.             if (== _S_start_free) 
  125.             {
  126.                 size_t __i;
  127.                 _Obj* volatile* __my_free_list;
  128.                 _Obj* __p;
  129.                 // Try to make do with what we have. That can't
  130.                 // hurt. We do not try smaller requests, since that tends
  131.                 // to result in disaster on multi-process machines.
  132.                 for (__i = __size; __i <= (size_t) _MAX_BYTES; __i += (size_t) _ALIGN) 
  133.                 {
  134.                     __my_free_list = _S_free_list + _S_freelist_index(__i);
  135.                     __p = *__my_free_list;
  136.                     if (!= __p) 
  137.                     {
  138.                         *__my_free_list = __p -> _M_free_list_link;
  139.                         _S_start_free = (char*)__p;
  140.                         _S_end_free = _S_start_free + __i;
  141.                         return(_S_chunk_alloc(__size, __nobjs));
  142.                         // Any leftover piece will eventually make it to the
  143.                         // right free list.
  144.                     }
  145.                 }
  146.                 _S_end_free = 0;    // In case of exception.
  147.                 _S_start_free = (char*) malloc(__bytes_to_get);
  148.                 // This should either throw an
  149.                 // exception or remedy the situation. Thus we assume it
  150.                 // succeeded.
  151.             }
  152.             _S_heap_size += __bytes_to_get;
  153.             _S_end_free = _S_start_free + __bytes_to_get;
  154.             return(_S_chunk_alloc(__size, __nobjs));
  155.         }
  156.     }

  157.     /* Returns an object of size __n, and optionally adds to size __n free list.*/
  158.     /* We assume that __n is properly aligned. */
  159.     /* We hold the allocation lock. */
  160.     template <bool __threads, int __inst>
  161.     void* __default_alloc_template<__threads, __inst>::_S_refill(size_t __n)
  162.     {
  163.         int __nobjs = 20;
  164.         char* __chunk = _S_chunk_alloc(__n, __nobjs);
  165.         _Obj* volatile* __my_free_list;
  166.         _Obj* __result;
  167.         _Obj* __current_obj;
  168.         _Obj* __next_obj;
  169.         int __i;

  170.         if (== __nobjs) 
  171.         {
  172.             return(__chunk);
  173.         }
  174.         __my_free_list = _S_free_list + _S_freelist_index(__n);

  175.         /* Build free list in chunk */
  176.         __result = (_Obj*)__chunk;
  177.         *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
  178.         for (__i = 1; ; __i++) 
  179.         {
  180.             __current_obj = __next_obj;
  181.             __next_obj = (_Obj*)((char*)__next_obj + __n);
  182.             if (__nobjs - 1 == __i) 
  183.             {
  184.                 __current_obj -> _M_free_list_link = 0;
  185.                 break;
  186.             } 
  187.             else 
  188.             {
  189.                 __current_obj -> _M_free_list_link = __next_obj;
  190.             }
  191.         }
  192.         return(__result);
  193.     }

  194.     template <bool threads, int inst>
  195.     void* __default_alloc_template<threads, inst>::reallocate(void* __p, size_t __old_sz, size_t __new_sz)
  196.     {
  197.         mutex_lock    __lock;
  198.         __lock.acquire_lock();
  199.         void* __result;
  200.         size_t __copy_sz;

  201.         if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES) 
  202.         {
  203.             __lock.release_lock();
  204.             return(realloc(__p, __new_sz));
  205.         }
  206.         if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) 
  207.         {
  208.             __lock.release_lock();
  209.             return(__p);
  210.         }
  211.         __result = allocate(__new_sz);
  212.         __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
  213.         memcpy(__result, __p, __copy_sz);
  214.         deallocate(__p, __old_sz);
  215.         __lock.release_lock();
  216.         return(__result);
  217.     }

  218.     template< bool threads, int inst >
  219.     char* __default_alloc_template<threads, inst>::_S_start_free = 0;

  220.     template< bool threads, int inst >
  221.     char* __default_alloc_template<threads, inst>::_S_end_free = 0;

  222.     template< bool threads, int inst >
  223.     size_t __default_alloc_template<threads, inst>::_S_heap_size = 0;

  224.     template <bool __threads, int __inst>
  225.     typename __default_alloc_template<__threads, __inst>::_Obj* volatile
  226.         __default_alloc_template<__threads, __inst> ::_S_free_list[_NFREELISTS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };

 参考:
    sqi stl
      http://www.sgi.com/tech/stl/
今天的文章 内存池——第一章 几种常用的内存池技术分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2024-12-16 23:27
下一篇 2024-12-16 23:21

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/87705.html