2015顶峰 何凯明
from streamlit.testing.v1.element_tree import SpecialBlock from torch import nn from torch.testing._internal.common_nn import output_size def CommonBlock(param, param1, param2): pass def SpecialBlockBlock(param, param1, param2): pass class ResNet18(nn.Module): def __init__(self,classes_num): super(ResNet18,self).__init__() self.prepare = nn.Sequential( nn.Conv2d(3,64,7,2,3), nn.BatchNorm2d(64), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(3,2,1) ) self.layer1 = nn.Sequential( CommonBlock(64,64,1), CommonBlock(64,64,1) ) self.layer2 = nn.Sequential( SpecialBlockBlock(64,128,[2,1]), CommonBlock(64,128,1) ) self.layer3 = nn.Sequential( SpecialBlock(128,256,[2,1]), CommonBlock(256,256,1) ) self.layer4 = nn.Sequential( SpecialBlock(256,512,[2,1]), CommonBlock(512,512,1) ) self.pool = nn.AdaptiveAvgPool2d(output_size) self.fc = nn.Sequential( # nn.Dropout(p=0.5), # nn.Linear(512,256), # nn.ReLU(inplace=True), # nn.Dropout(p=0.5), nn.Linear(512,classes_num) ) def forward(self,x): x = self.prepare(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.pool(x) x = x.reshape(x.shape[0],-1) x = self.fc(x) return x
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ri-ji/55021.html