resnet18网络结构4个大残差快(resnet残差网络代码)

resnet18网络结构4个大残差快(resnet残差网络代码)2015 顶峰 何凯明 from streamlit testing v1 element tree import SpecialBlock from torch import nn from torch testing internal common nn import output size def CommonBlock param param1 param2 pass def SpecialBlock param param1 param2 pass



2015顶峰 何凯明

from streamlit.testing.v1.element_tree import SpecialBlock
from torch import nn
from torch.testing._internal.common_nn import output_size


def CommonBlock(param, param1, param2):
    pass


def SpecialBlockBlock(param, param1, param2):
    pass


class ResNet18(nn.Module):
    def __init__(self,classes_num):
        super(ResNet18,self).__init__()
        self.prepare = nn.Sequential(
            nn.Conv2d(3,64,7,2,3),
            nn.BatchNorm2d(64),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(3,2,1)
        )
        self.layer1 = nn.Sequential(
            CommonBlock(64,64,1),
            CommonBlock(64,64,1)
)
        self.layer2 = nn.Sequential(
            SpecialBlockBlock(64,128,[2,1]),
            CommonBlock(64,128,1)
)
        self.layer3 = nn.Sequential(
            SpecialBlock(128,256,[2,1]),
            CommonBlock(256,256,1)
)
        self.layer4 = nn.Sequential(
            SpecialBlock(256,512,[2,1]),
            CommonBlock(512,512,1)
)
        self.pool = nn.AdaptiveAvgPool2d(output_size)
        self.fc = nn.Sequential(
    # nn.Dropout(p=0.5),
    # nn.Linear(512,256),
    # nn.ReLU(inplace=True),
    # nn.Dropout(p=0.5),
             nn.Linear(512,classes_num)
)
def forward(self,x):
    x = self.prepare(x)
    x = self.layer1(x)
    x = self.layer2(x)
    x = self.layer3(x)

    x = self.pool(x)
    x = x.reshape(x.shape[0],-1)
    x = self.fc(x)
    return x

编程小号
上一篇 2025-04-07 09:57
下一篇 2025-04-16 12:57

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ri-ji/55021.html