0 引言
情感分析分为基于句子的情感分析和基于方面的情感分析。如“这家餐厅菜品好吃,但交通不便利”,文本的实体为“这家餐厅”,分别对“菜品”和“交通”两个方面进行褒贬不一的评论。若判断整个句子的情感极性为积极、消极或中立显然是不精准的,因此关注方面情感更为重要。基于方面的情感分析前期主要采用基于机器学习的利用情感词典的特征构建分类器[1],其主要依赖人工规则和特征工程,且耗时成本高。近年来神经网络在中得到广泛使用,文献[2]提出一种用于方面相关的自适应递归神经网络,但是其依赖语境和句法结构预测方面的情感极性。长短期记忆模型[3]能解决长距离依赖的问题,文献[4]改进了该模型,引入树结构长短期记忆模型,准确度有所提升,但模型训练时间长。文献[5]提出应用注意力机制方法实现对方面词周围情感词的关注,但注意力机制不能捕捉序列的顺序,且注意力层涉及指数操作和句子中所有单词的所有对齐分数的标准化,所需计算时间长。文献[6]将注意力机制、长短期记忆网络和相结合,建立情感分析模型,但当一个句子中含有多个方面以及多个方面的情感词时,其判断可靠性一般,训练时间相比长短期记忆网络更长。文献[7]提出GCAE模型,其改善了系统的性能,提高了情感极性的预测准确度,但忽略了位置信息的重要性。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003120
作者信息:
时昭丽,范红,陈佳伟,董亚博,张子薇,许武军
(东华大学 信息科学与技术学院,上海 201620)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ri-ji/69253.html