理解无偏估计量
现实中常常有这样的问题,比如,想知道全体女性的身高均值 μ \mu μ ,但是没有办法把每个女性都进行测量,只有抽样一些女性来对全体女性的身高进行估计.
那么根据抽样数据怎么样进行推断?什么样的推断方法可以称为好。
无偏性
比如我们抽样到的女性身高为: x 1 , x 2 , … , x n {x_{1},x_{2},\dots,x_{n}} x1,x2,…,xn,那么:
X ‾ = x 1 + x 2 + ⋯ + x n n \overline{X}=\frac{x_{1}+x_{2}+\dots+x_{n}}{n} X=nx1+x2+⋯+xn
这是对 μ \mu μ 一个不错的估计,为什么,因为它是无偏估计。
首先,真正女性的身高均值为 μ \mu μ ,但是我们不能计算得到,只能通过估计得到其近似值 X ‾ \overline{X} X:
但是实际的估计均值和我们采样的数据相关,它是变化的,因此不同采样得到的 X ‾ \overline{X} X 是围绕 μ \mu μ 左右波动的。
这个内容有点像打靶,只要命中在靶心周围就是不错的成绩:
如果出现偏差的话,就出现类似如下图的效果,偏离靶心:
因此无偏估计是好于有偏估计的。
有效性
打靶的时候,右边的成绩肯定更加优秀:
进行估计的时候也是,估计量越靠近目标,效果越好,这个“靠近”可以用方差来衡量,方差越小的话,估计量的分布越接近于 μ \mu μ。
有效估计和无偏估计是不相关的,从下图可以看出,无论是否偏离靶心,方差更加密集的点更加有效(意味着方差越小):
举个例子,从 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2) 中抽出10个样本: x 1 , x 2 , … , x 10 {x_{1},x_{2},\dots,x_{10}} x1,x2,…,x10 下面两个都是无偏估计量:
T 1 = x 1 + x 3 + 2 x 10 4 T_{1}=\frac{x_{1}+x_{3}+2x_{10}}{4} T1=4x1+x3+2x10
T 2 = 1 10 ∑ i = 1 10 x i T_{2}=\frac{1}{10}\sum_{i=1}{10}x_{i} T2=101i=1∑10xi
但是后者比前者方差小,后者效果更好,并且在现实中不一定非要选择无偏估计量。
一致性
如果用以下式子去估计方差 σ 2 \sigma^{2} σ2: S 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 S^{2}=\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2} S2=n1∑i=1n(Xi−X)2 会有一个偏差: 1 n σ 2 \frac{1}{n}\sigma^{2} n1σ2。
可以看到,随着采样个数n的增加,这个偏差会越来越小,那么这个估计就是一致的。如果参数样本够多,其实这种有偏但是一致的估计量也是可选的。
总结
判断一个估计量的好快,至少可以从一下三个方面来靠考虑 :
- 无偏
- 有效
- 一致
实际操作中,要找到满足三个方面的估计量有时候并不容易,因此可以根据情况进行取舍。
今天的文章理解无偏估计量分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/10354.html