JVM8 元空间

JVM8 元空间参考网址:http://itindex.net/detail/49579-java-%E7%A9%BA%E9%97%B4http://openjdk.java.net/jeps/122http://www.open-open.com/lib/view/open1434962681825.html本文我们将会介绍JVM的一个更新,这就是持久代的移除。我们会介绍为什么需要移除持久代,以及它

参考网址:http://itindex.net/detail/49579-java-%E7%A9%BA%E9%97%B4

http://openjdk.java.net/jeps/122

http://www.open-open.com/lib/view/open1434962681825.html

本文我们将会介绍JVM的一个更新,这就是持久代的移除。我们会介绍为什么需要移除持久代,以及它的替代者,元空间(metaspace)。这是上一篇文章 内存管理之垃圾回收的续集。

Java 6中的堆结构是这样的:

JVM8 元空间

持久代

持久代中包含了虚拟机中所有可通过反射获取到的数据,比如Class和Method对象。不同的Java虚拟机之间可能会进行类共享,因此持久代又分为只读区和读写区。

JVM用于描述应用程序中用到的类和方法的元数据也存储在持久代中。JVM运行时会用到多少持久代的空间取决于应用程序用到了多少类。除此之外,Java SE库中的类和方法也都存储在这里。

如果JVM发现有的类已经不再需要了,它会去回收(卸载)这些类,将它们的空间释放出来给其它类使用。Full GC会进行持久代的回收。

  • JVM中类的元数据在Java堆中的存储区域。
  • Java类对应的HotSpot虚拟机中的内部表示也存储在这里。
  • 类的层级信息,字段,名字。
  • 方法的编译信息及字节码。
  • 变量
  • 常量池和符号解析

持久代的大小

  • 它的上限是MaxPermSize,默认是64M
  • Java堆中的连续区域 : 如果存储在非连续的堆空间中的话,要定位出持久代到新对象的引用非常复杂并且耗时。卡表(card table),是一种记忆集(Remembered Set),它用来记录某个内存代中普通对象指针(oops)的修改。
  • 持久代用完后,会抛出OutOfMemoryError “PermGen space”异常。解决方案:应用程序清理引用来触发类卸载;增加MaxPermSize的大小。
  • 需要多大的持久代空间取决于类的数量,方法的大小,以及常量池的大小。

为什么移除持久代

  • 它的大小是在启动时固定好的——很难进行调优。-XX:MaxPermSize,设置成多少好呢?
  • HotSpot的内部类型也是Java对象:它可能会在Full GC中被移动,同时它对应用不透明,且是非强类型的,难以跟踪调试,还需要存储元数据的元数据信息(meta-metadata)。
  • 简化Full GC:每一个回收器有专门的元数据迭代器。
  • 可以在GC不进行暂停的情况下并发地释放类数据。
  • 使得原来受限于持久代的一些改进未来有可能实现

那么JVM的元数据都去哪儿了?

JVM8 元空间

元空间(metaspace)

持久代的空间被彻底地删除了,它被一个叫元空间的区域所替代了。持久代删除了之后,很明显,JVM会忽略PermSize和MaxPermSize这两个参数,还有就是你再也看不到java.lang.OutOfMemoryError: PermGen error的异常了。原来类的静态变量和Interned Strings 都被转移到了java堆区,

只有class元数据才在元空间。

JDK 8的HotSpot JVM现在使用的是本地内存来表示类的元数据,这个区域就叫做元空间。

元空间的特点:

  • 充分利用了Java语言规范中的好处:类及相关的元数据的生命周期与类加载器的一致。
  • 每个加载器有专门的存储空间
  • 只进行线性分配
  • 不会单独回收某个类
  • 省掉了GC扫描及压缩的时间
  • 元空间里的对象的位置是固定的
  • 如果GC发现某个类加载器不再存活了,会把相关的空间整个回收掉

元空间的内存分配模型

  • 绝大多数的类元数据的空间都从本地内存中分配
  • 用来描述类元数据的类也被删除了
  • 分元数据分配了多个虚拟内存空间
  • 给每个类加载器分配一个内存块的列表。块的大小取决于类加载器的类型; sun/反射/代理对应的类加载器的块会小一些
  • 归还内存块,释放内存块列表
  • 一旦元空间的数据被清空了,虚拟内存的空间会被回收掉
  • 减少碎片的策略

我们来看下JVM是如何给元数据分配虚拟内存的空间的

JVM8 元空间

你可以看到虚拟内存空间是如何分配的(vs1,vs2,vs3) ,以及类加载器的内存块是如何分配的。CL是Class Loader的缩写。

理解_mark和_klass指针

要想理解下面这张图,你得搞清楚这些指针都是什么东西。

JVM中,每个对象都有一个指向它自身类的指针,不过这个指针只是指向具体的实现类,而不是接口或者抽象类。

对于32位的JVM:

_mark : 4字节常量

_klass: 指向类的4字节指针 对象的内存布局中的第二个字段( _klass,在32位JVM中,相对对象在内存中的位置的偏移量是4,64位的是8)指向的是内存中对象的类定义。

64位的JVM:

_mark : 8字节常量

_klass: 指向类的8字节的指针

开启了指针压缩的64位JVM: _mark : 8字节常量

_klass: 指向类的4字节的指针

Java对象的内存布局

JVM8 元空间

类指针压缩空间(Compressed Class Pointer Space)

只有是64位平台上启用了类指针压缩才会存在这个区域。对于64位平台,为了压缩JVM对象中的_klass指针的大小,引入了类指针压缩空间(Compressed Class Pointer Space)。

JVM8 元空间

压缩指针后的内存布局

JVM8 元空间

指针压缩概要

  • 64位平台上默认打开
  • 使用-XX:+UseCompressedOops压缩对象指针 “oops”指的是普通对象指针(“ordinary” object pointers)。 Java堆中对象指针会被压缩成32位。 使用堆基地址(如果堆在低26G内存中的话,基地址为0)

  • 使用-XX:+UseCompressedClassPointers选项来压缩类指针

  • 对象中指向类元数据的指针会被压缩成32位

  • 类指针压缩空间会有一个基地址

元空间和类指针压缩空间的区别

  • 类指针压缩空间只包含类的元数据,比如InstanceKlass, ArrayKlass 仅当打开了UseCompressedClassPointers选项才生效 为了提高性能,Java中的虚方法表也存放到这里 这里到底存放哪些元数据的类型,目前仍在减少

  • 元空间包含类的其它比较大的元数据,比如方法,字节码,常量池等。

元空间的调优

使用-XX:MaxMetaspaceSize参数可以设置元空间的最大值,默认是没有上限的,也就是说你的系统内存上限是多少它就是多少。-XX:MetaspaceSize选项指定的是元空间的初始大小,如果没有指定的话,元空间会根据应用程序运行时的需要动态地调整大小。

MaxMetaspaceSize的调优

  • -XX:MaxMetaspaceSize={unlimited}
  • 元空间的大小受限于你机器的内存
  • 限制类的元数据使用的内存大小,以免出现虚拟内存切换以及本地内存分配失败。如果怀疑有类加载器出现泄露,应当使用这个参数;32位机器上,如果地址空间可能会被耗尽,也应当设置这个参数。
  • 元空间的初始大小是21M——这是GC的初始的高水位线,超过这个大小会进行Full GC来进行类的回收。
  • 如果启动后GC过于频繁,请将该值设置得大一些
  • 可以设置成和持久代一样的大小,以便推迟GC的执行时间

CompressedClassSpaceSize的调优

  • 只有当-XX:+UseCompressedClassPointers开启了才有效
  • -XX:CompressedClassSpaceSize=1G
  • 由于这个大小在启动的时候就固定了的,因此最好设置得大点。
  • 没有使用到的话不要进行设置
  • JVM后续可能会让这个区可以动态的增长。不需要是连续的区域,只要从基地址可达就行;可能会将更多的类元信息放回到元空间中;未来会基于PredictedLoadedClassCount的值来自动的设置该空间的大小

元空间的一些工具

  • jmap -permstat改成了jmap -clstats。它用来打印Java堆的类加载器的统计数据。对每一个类加载器,会输出它的名字,是否存活,地址,父类加载器,以及它已经加载的类的数量及大小。除此之外,驻留的字符串(intern)的数量及大小也会打印出来。
  • jstat -gc,这个命令输出的是元空间的信息而非持久代的
  • jcmd GC.class_stats提供类元数据大小的详细信息。使用这个功能启动程序时需要加上-XX:+UnlockDiagnosticVMOptions选项。

提高GC的性能

如果你理解了元空间的概念,很容易发现GC的性能得到了提升。

  • Full GC中,元数据指向元数据的那些指针都不用再扫描了。很多复杂的元数据扫描的代码(尤其是CMS里面的那些)都删除了。
  • 元空间只有少量的指针指向Java堆。这包括:类的元数据中指向java/lang/Class实例的指针;数组类的元数据中,指向java/lang/Class集合的指针。
  • 没有元数据压缩的开销
  • 减少了根对象的扫描(不再扫描虚拟机里面的已加载类的字典以及其它的内部哈希表)
  • 减少了Full GC的时间
  • G1回收器中,并发标记阶段完成后可以进行类的卸载

总结

  • Hotspot中的元数据现在存储到了元空间里。mmap中的内存块的生命周期与类加载器的一致。
  • 类指针压缩空间(Compressed class pointer space)目前仍然是固定大小的,但它的空间较大
  • 可以进行参数的调优,不过这不是必需的。
  • 未来可能会增加其它的优化及新特性。比如, 应用程序类数据共享;新生代GC优化,G1回收器进行类的回收;减少元数据的大小,以及JVM内部对象的内存占用量。

译注:这有点像一篇读书笔记,比较琐碎。。

原创文章转载请注明出处: Java 8的元空间 英文原文链接

Description

Move part of the contents of the permanent generation in Hotspot to the Java heap and the remainder to native memory.

Hotspot’s representation of Java classes (referred to here as class meta-data) is currently stored in a portion of the Java heap referred to as the permanent generation. In addition, interned Strings and class static variables are stored in the permanent generation. The permanent generation is managed by Hotspot and must have enough room for all the class meta-data, interned Strings and class statics used by the Java application. Class metadata and statics are allocated in the permanent generation when a class is loaded and are garbage collected from the permanent generation when the class is unloaded. Interned Strings are also garbage collected when the permanent generation is GC’ed.

The proposed implementation will allocate class meta-data in native memory and move interned Strings and class statics to the Java heap. Hotspot will explicitly allocate and free the native memory for the class meta-data. Allocation of new class meta-data would be limited by the amount of available native memory rather than fixed by the value of -XX:MaxPermSize, whether the default or specified on the command line.

Allocation of native memory for class meta-data will be done in blocks of a size large enough to fit multiple pieces of class meta-data. Each block will be associated with a class loader and all class meta-data loaded by that class loader will be allocated by Hotspot from the block for that class loader. Additional blocks will be allocated for a class loader as needed. The block sizes will vary depending on the behavior of the application. The sizes will be chosen so as to limit internal and external fragmentation. Freeing the space for the class meta-data would be done when the class loader dies by freeing all the blocks associated with the class loader. Class meta-data will not be moved during the life of the class.

Alternatives

The goal of removing the need for sizing the permanent generation can be met by having a permanent generation that can grow. There are additional data structures that would have to grow with the permanent generation (such as the card table and block offset table). For an efficient implementation the permanent generation would need to look like one contiguous space with some parts that are not usable.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/10445.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注