seaborn.heatmap参数介绍「终于解决」

seaborn.heatmap参数介绍「终于解决」Seaborn的heatmap各个参数介绍seaborn.heatmapseaborn.heatmap(data,vmin=None,vmax=None,cmap=None,center=None,robust=False,annot=None,fmt=’.2g’,annotkws=None,linewidths=0,linecolor=’white’,cbar=True,…

Seaborn的heatmap各个参数介绍

seaborn.heatmap

seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt=’.2g’, annotkws=None, linewidths=0, linecolor=’white’, cbar=True, cbarkws=None, cbar_ax=None, square=False, ax=None, xticklabels=True, yticklabels=True, mask=None, **kwargs)

  • data:矩阵数据集,可以使numpy的数组(array),如果是pandas的dataframe,则df的index/column信息会分别对应到heatmap的columns和rows
  • linewidths,热力图矩阵之间的间隔大小
  • vmax,vmin, 图例中最大值和最小值的显示值,没有该参数时默认不显示

2.1 cmap

  • cmap:matplotlib的colormap名称或颜色对象;如果没有提供,默认为cubehelix map (数据集为连续数据集时) 或 RdBu_r (数据集为离散数据集时)
f, (ax1,ax2) = plt.subplots(figsize = (10, 8),nrows=2)
# cubehelix map颜色
cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True)
sns.heatmap(pt, linewidths = 0.05, ax = ax1, vmax=15000, vmin=0, cmap=cmap)
ax1.set_title('cubehelix map')
ax1.set_xlabel('')
ax1.set_xticklabels([]) #设置x轴图例为空值
ax1.set_ylabel('kind')
# matplotlib colormap
sns.heatmap(pt, linewidths = 0.05, ax = ax2, vmax=15000, vmin=0, cmap='rainbow') 
# rainbow为 matplotlib 的colormap名称
ax2.set_title('matplotlib colormap')
ax2.set_xlabel('region')
ax2.set_ylabel('kind')
f.savefig('sns_heatmap_cmap.jpg', bbox_inches='tight')

seaborn.heatmap参数介绍「终于解决」

2.2 center

  • center:将数据设置为图例中的均值数据,即图例中心的数据值;通过设置center值,可以调整生成的图像颜色的整体深浅;设置center数据时,如果有数据溢出,则手动设置的vmax、vmin会自动改变
f, (ax1,ax2) = plt.subplots(figsize = (10, 8),nrows=2)
cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True)
sns.heatmap(pt, linewidths = 0.05, ax = ax1, vmax=15000, vmin=0, cmap=cmap, center=None )
# center为None时,由于最小值为0,最大值为15000,相当于center值为vamx和vmin的均值,即7500
ax1.set_title('center=None')
ax1.set_xlabel('')
ax1.set_xticklabels([]) #设置x轴图例为空值
ax1.set_ylabel('kind')
sns.heatmap(pt, linewidths = 0.05, ax = ax2, vmax=15000, vmin=0, cmap=cmap, center=3000 ) 
# 由于均值为2000,当center设置为3000时,大部分数据会比7500大,所以center=3000时,生成的图片颜色要深
# 设置center数据时,如果有数据溢出,则手动设置的vmax或vmin会自动改变
ax2.set_title('center=3000')
ax2.set_xlabel('region')
ax2.set_ylabel('kind')
f.savefig('sns_heatmap_center.jpg', bbox_inches='tight')

seaborn.heatmap参数介绍「终于解决」

2.3 robust

f, (ax1,ax2) = plt.subplots(figsize = (10, 8),nrows=2)
cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True)
sns.heatmap(pt, linewidths = 0.05, ax = ax1, cmap=cmap, center=None, robust=False )
# robust默认为False
ax1.set_title('robust=False')
ax1.set_xlabel('')
ax1.set_xticklabels([]) #设置x轴图例为空值
ax1.set_ylabel('kind')
sns.heatmap(pt, linewidths = 0.05, ax = ax2, cmap=cmap, center=None, robust=True ) 
# If True and vmin or vmax are absent, the colormap range is computed with robust quantiles instead of the extreme values.
ax2.set_title('robust=True')
ax2.set_xlabel('region')
ax2.set_ylabel('kind')
f.savefig('sns_heatmap_robust.jpg', bbox_inches='tight')

seaborn.heatmap参数介绍「终于解决」

2.4 mask

f, (ax1,ax2) = plt.subplots(figsize = (10, 8),nrows=2)
cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True)
p1 = sns.heatmap(pt, linewidths = 0.05,ax=ax1, vmax=15000, vmin=0, cmap=cmap, center=None, robust=False, mask=None )
# robust默认为False
ax1.set_title('mask=None')
ax1.set_xlabel('')
ax1.set_xticklabels([]) #设置x轴图例为空值
ax1.set_ylabel('kind')
p2 = sns.heatmap(pt, linewidths = 0.05, ax=ax2, vmax=15000, vmin=0, cmap=cmap, center=None, robust=False, annot=False,mask=pt<10000 ) 
# mask: boolean array or DataFrame
ax2.set_title('mask: boolean DataFrame')
ax2.set_xlabel('region')
ax2.set_ylabel('kind')
f.savefig('sns_heatmap_mask.jpg', bbox_inches='tight')

seaborn.heatmap参数介绍「终于解决」

2.5 xticklabels, yticklabels

  • xticklabels: 如果是True,则绘制dataframe的列名。如果是False,则不绘制列名。如果是列表,则绘制列表中的内容作为xticklabels。 如果是整数n,则绘制列名,但每个n绘制一个label。 默认为True。
  • yticklabels: 如果是True,则绘制dataframe的行名。如果是False,则不绘制行名。如果是列表,则绘制列表中的内容作为yticklabels。 如果是整数n,则绘制列名,但每个n绘制一个label。 默认为True。默认为True。
f, (ax1,ax2) = plt.subplots(figsize = (10, 8),nrows=2)
cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True)
p1 = sns.heatmap(pt, linewidths = 0.05,ax=ax1, vmax=15000, vmin=0, cmap=cmap, center=None, robust=False, mask=None, xticklabels=False )
# robust默认为False
ax1.set_title('xticklabels=None')
ax1.set_xlabel('')
# ax1.set_xticklabels([]) #设置x轴图例为空值
ax1.set_ylabel('kind')
p2 = sns.heatmap(pt, linewidths = 0.05, ax=ax2, vmax=15000, vmin=0, cmap=cmap, center=None, robust=False, annot=False,mask=None,xticklabels=3, yticklabels=list(range(20)) ) 
# mask: boolean array or DataFrame
ax2.set_title('xticklabels=3, yticklabels is a list')
ax2.set_xlabel('region')
ax2.set_ylabel('kind')
f.savefig('sns_heatmap_xyticklabels.jpg', bbox_inches='tight')

seaborn.heatmap参数介绍「终于解决」

2.6 annot

  • annotate的缩写,annot默认为False,当annot为True时,在heatmap中每个方格写入数据
  • annot_kws,当annot为True时,可设置各个参数,包括大小,颜色,加粗,斜体字等
np.random.seed(0)
x = np.random.randn(10, 10)
f, (ax1, ax2) = plt.subplots(figsize=(8,8),nrows=2)
sns.heatmap(x, annot=True, ax=ax1)
sns.heatmap(x, annot=True, ax=ax2, annot_kws={ 
    'size':9,'weight':'bold', 'color':'blue'})
# Keyword arguments for ax.text when annot is True.
# http://stackoverflow.com/questions/35024475/seaborn-heatmap-key-words
f.savefig('sns_heatmap_annot.jpg')

seaborn.heatmap参数介绍「终于解决」

**关于annot_kws的设置,还有很多值得研究的地方,ax.text有很多属性,有兴趣的可以去研究下;

ax.text可参考官方文档:matplotlib.org/api/text

2.7 fmt

  • fmt,格式设置
np.random.seed(0)
x = np.random.randn(10, 10)
f, (ax1, ax2) = plt.subplots(figsize=(8,8),nrows=2)
sns.heatmap(x, annot=True, ax=ax1)
sns.heatmap(x, annot=True, fmt='.1f', ax=ax2)
f.savefig('sns_heatmap_fmt.jpg')

seaborn.heatmap参数介绍「终于解决」

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:http://bianchenghao.cn/10774.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注