对全连接层(fully connected layer)的通俗理解

对全连接层(fully connected layer)的通俗理解全连接层(fullyconnectedlayers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1×1的卷积;而前层是卷积层的全连接层可以转化为卷积核为hxw的全局卷积,h和w分别为前层卷积结果的高和宽。全连接的核心操作就是矩阵向量乘积y=Wx。

定义

全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的“分布式特征表示”映射到样本标记空间的作用。在实际使用中,全连接层可由卷积操作实现:

对前层是全连接的全连接层可以转化为卷积核为1×1的卷积;而前层是卷积层的全连接层可以转化为卷积核为hxw的全局卷积,h和w分别为前层卷积结果的高和宽。

全连接的核心操作就是矩阵向量乘积 y = Wx

本质就是由一个特征空间线性变换到另一个特征空间。目标空间的任一维——也就是隐层的一个 cell——都认为会受到源空间的每一维的影响。不考虑严谨,可以说,目标向量是源向量的加权和。

在 CNN 中,全连接常出现在最后几层,用于对前面设计的特征做加权和。比如 mnist,前面的卷积和池化相当于做特征工程,后面的全连接相当于做特征加权。(卷积相当于全连接的有意弱化,按照局部视野的启发,把局部之外的弱影响直接抹为零影响;还做了一点强制,不同的局部所使用的参数居然一致。弱化使参数变少,节省计算量,又专攻局部不贪多求全;强制进一步减少参数。少即是多) 在 RNN 中,全连接用来把 embedding 空间拉到隐层空间,把隐层空间转回 label 空间等。

CNN与全连接

在CNN结构中,经多个卷积层和池化层后,连接着1个或1个以上的全连接层.与MLP类似,全连接层中的每个神经元与其前一层的所有神经元进行全连接.全连接层可以整合卷积层或者池化层中具有类别区分性的局部信息.为了提升 CNN网络性能,全连接层每个神经元的激励函数一般采用ReLU函数。

最后一层全连接层的输出值被传递给一个输出,可以采用softmax逻辑回归(softmax regression)进行 分 类,该层也可 称为 softmax层(softmax layer).对于一个具体的分类任务,选择一个合适的损失函数是十分重要的,CNN几种常用的损失函数并分析了它们各自的特点.通 常,CNN的全连接层与MLP 结构一样,CNN的训练算法也多采用BP算法

举个例子:

对全连接层(fully connected layer)的通俗理解

最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,进行了最后一次池化,输出了20个12*12的图像,然后通过了一个全连接层变成了1*100的向量。

这是怎么做到的呢,其实就是有20*100个12*12的卷积核卷积出来的,对于输入的每一张图,用了一个和图像一样大小的核卷积,这样整幅图就变成了一个数了,如果厚度是20就是那20个核卷积完了之后相加求和。这样就能把一张图高度浓缩成一个数了。全连接的目的是什么呢?

因为传统的网络我们的输出都是分类,也就是几个类别的概率甚至就是一个数–类别号,那么全连接层就是高度提纯的特征了,方便交给最后的分类器或者回归。但是全连接的参数实在是太多了,你想这张图里就有20*12*12*100个参数,前面随便一层卷积,假设卷积核是7*7的,厚度是64,那也才7*7*64,所以现在的趋势是尽量避免全连接,目前主流的一个方法是全局平均值。

也就是最后那一层的feature map(最后一层卷积的输出结果),直接求平均值。有多少种分类就训练多少层,这十个数字就是对应的概率或者叫置信度。

今天的文章对全连接层(fully connected layer)的通俗理解分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/11244.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注