绘图杂记【1】Python、R等绘图

绘图杂记【1】Python、R等绘图离散分布水平条形图Discretedistributionashorizontalbarchartimportnumpyasnpimportmatplotlib.pyplotaspltcategory_names=[‘Stronglydisagree’,’Disagree’,’Neitheragreenordisagree’,’Agree’,’Stronglyagree’]results={‘Que

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

pyhton代码和echarts代码
在这里插入图片描述

option = { 
   
     toolbox: { 
   
            show: true,
            feature: { 
   
                dataView: { 
   show:true},
                saveAsImage: { 
   
                    //excludeComponents :['toolbox'],
                    pixelRatio: 20
                }
            }
},
    
        tooltip: { 
   
            legend: { 
   },
            trigger: 'axis',
            axisPointer: { 
   
                type: 'none'
            },
            formatter: function (params) { 
   
                return params[0].name + ': ' + params[0].value;
            }
        },
        xAxis: { 
   
            data: ['建设艺术馆', '建设科技创展馆', '建设儒商文化长廊', '建设财经特色博物馆', '建设茶园校区文化景观集群' ,'其他'],
            axisTick: { 
   show: false},
            axisLine: { 
   show: false},
            axisLabel: { 
   
                textStyle: { 
   
                    color: '#00000',
                   
                },
                 //rotate:90,
                  interval: 0,
                                            formatter:function(value)
                                            { 
   
                                                return value.split("").join("\n");
                                            },
                textStyle: { 
   
          fontSize : 16      //更改坐标轴文字大小
        }
            }
        },
        yAxis: { 
   
            splitLine: { 
   show: false},
            axisTick: { 
   show: false},
            axisLine: { 
   show: false},
            axisLabel: { 
   show: false}
        },
        
            grid: [
        { 
   bottom: '50%'},
        { 
   top: '10%'}
    ],
        color: ['#89DA4F','#FCC828','#8EC7F4','#CDCBEC','#14B961'],
        series: [{ 
   
            name: 'hill',
            barWidth :99,
            type: 'pictorialBar',
            barCategoryGap: '0%',
            // symbol: 'path://M0,10 L10,10 L5,0 L0,10 z',
            symbol: 'path://path://M10 600 Q 95 0 180 600',
            label:{ 
    
                    normal:{ 
    
                      show: true, 
                      position: 'top',
                      formatter:'{c}%',
                      fontSize:19
                       
                    } 
                  },
                  
            itemStyle: { 
   
                normal: { 
   
                    opacity: 1,
                    color: function (params){ 
   
                      var colorList = ['#89DA4F','#FCC828','#8EC7F4','#CDCBEC','#14B961','#FF99FF'];
                      return colorList[params.dataIndex];
                    }
                },
                emphasis: { 
   
                    opacity: 1
                }
            },
            data: [18.28, 27.03, 10.27, 21.70, 13.88,8.83],
        }]
    };

在这里插入图片描述


var scale = 1;



    option = { 
   
      tooltip : { 
   
        trigger: 'item',
        formatter: "{a} <br/>{b} : {c} ({d}%)"
      },
      title: { 
   
        text:'学生',
        left:'center',
        top:'47%',
        // padding:[24,0],
        textStyle:{ 
   
          color:'#031f2d',
          fontSize:20*scale,
          align:'center'
        }
      },
    series: [
        { 
   

            name: '半径模式',
            
            type: 'pie',
            radius: [50, 130],
            center: ['50%', '50%'],
            roseType: 'radius',
            
labelLine:{ 
     
     normal:{ 
     
          length:0.1,  // 改变标示线的长度
          lineStyle: { 
   

          }
     },
},
        avoidLabelOverlap: false,
        hoverAnimation: true,
        label: { 
   

            emphasis: { 
   //中间文字显示
                show: false,
            }
        },

            emphasis: { 
   
                label: { 
   
                    show: true,
                }
            },
            data: [
                { 
   value: 35, name: '新建一些亭台楼阁\n休读和休闲点',
                    

                },
                { 
   value: 19, name: '完善校内人性化人行步道\n系统',
                                         itemStyle: { 
   
                    color: '#FF9966',
 
                  },
                },
                { 
   value: 5, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群',
                                                             itemStyle: { 
   
                    color: '#CC99CC',
 
                  },
                },
                { 
   value: 19, name: '美化现有建筑物环境和墙面'},
                { 
   value: 19, name: '开展主题化区域绿化\n(如桂花区香樟区等)'},
                { 
   value: 2, name: '其他'},
            ]
        },
        
    ]
};

在这里插入图片描述


 option = { 
   

toolbox: { 
   
            show: true,
            feature: { 
   
                dataView: { 
   show:true},
                saveAsImage: { 
   
                    //excludeComponents :['toolbox'],
                    pixelRatio: 20
                }
            }
},
    series: [
        { 
   

            name: '半径模式',
            
            type: 'pie',
            radius: [50, 110],
            center: ['49%', '29%'],
            roseType: 'radius',
            
labelLine:{ 
     
     normal:{ 
     
          length:0.1,  // 改变标示线的长度
          lineStyle: { 
   

          }
     },
},
         avoidLabelOverlap: false,
        label: { 
   
            normal: { 
   
                show: true,
                position: 'center',
                color:'#4c4a4a',
                
                formatter: '{total|'+'学生}',
                rich: { 
   
                    total:{ 
   
                        fontSize: 18,
                        fontFamily : "微软雅黑",
                        color:'#454c5c'
                    },
                    active: { 
   
                        fontFamily : "微软雅黑",
                        fontSize: 17,
                        color:'#6c7a89',
                        lineHeight:30,
                    },
                }
            },
            emphasis: { 
   //中间文字显示
                show: true,
            }
        },
            data: [
                { 
   value: 36.56, name: '新建一些亭台楼阁\n休读和休闲点',
                    

                },
                { 
   value: 18.51, name: '完善校内人性化人行步道\n系统',
                                         itemStyle: { 
   
                    color: '#FF9966',
 
                  },
                },
                { 
   value: 4.65, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群',
                                                             itemStyle: { 
   
                    color: '#CC99CC',
 
                  },
                },
                { 
   value: 19.53, name: '美化现有建筑物环境和墙面'},
                { 
   value: 18.51, name: '开展主题化区域绿化\n(如桂花区香樟区等)'},
                { 
   value: 2.25, name: '其他'},
            ]
        },
         { 
   

            name: '半径模式',
            
            type: 'pie',
            radius: [50, 130],
            center: ['23%', '70%'],
            roseType: 'radius',
            
labelLine:{ 
     
     normal:{ 
     
          length:0.1,  // 改变标示线的长度
          lineStyle: { 
   

          }
     },
},
         avoidLabelOverlap: false,
        label: { 
   
            normal: { 
   
                show: true,
                position: 'center',
                color:'#4c4a4a',
                
                formatter: '{total|'+'教师}',
                rich: { 
   
                    total:{ 
   
                        fontSize: 18,
                        fontFamily : "微软雅黑",
                        color:'#454c5c'
                    },
                    active: { 
   
                        fontFamily : "微软雅黑",
                        fontSize: 17,
                        color:'#6c7a89',
                        lineHeight:30,
                    },
                }
            },
            emphasis: { 
   //中间文字显示
                show: true,
            }
        },
            data: [
                { 
   value: 23.06, name: '新建一些亭台楼阁\n休读和休闲点',
                    

                },
                { 
   value: 28.15, name: '完善校内人性化人行步道\n系统',
                                         itemStyle: { 
   
                    color: '#FF9966',
 
                  },
                },
                { 
   value: 4.83, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群',
                                                             itemStyle: { 
   
                    color: '#CC99CC',
 
                  },
                },
                { 
   value: 15.01, name: '美化现有建筑物环境和墙面'},
                { 
   value: 24.93, name: '开展主题化区域绿化\n(如桂花区香樟区等)'},
                { 
   value: 4.02, name: '其他'},
            ]
        }, { 
   

            name: '半径模式',
            
            type: 'pie',
            radius: [50, 130],
            center: ['77%', '70%'],
            roseType: 'radius',
            
labelLine:{ 
     
     normal:{ 
     
          length:0.1,  // 改变标示线的长度
          lineStyle: { 
   

          }
     },
},
         avoidLabelOverlap: false,
        label: { 
   
            normal: { 
   
                show: true,
                position: 'center',
                color:'#4c4a4a',
                
                formatter: '{total|'+'校友}',
                rich: { 
   
                    total:{ 
   
                        fontSize: 18,
                        fontFamily : "微软雅黑",
                        color:'#454c5c'
                    },
                    active: { 
   
                        fontFamily : "微软雅黑",
                        fontSize: 17,
                        color:'#6c7a89',
                        lineHeight:30,
                    },
                }
            },
            emphasis: { 
   //中间文字显示
                show: true,
            }
        },
            data: [
                { 
   value: 22.64, name: '新建一些亭台楼阁\n休读和休闲点',
                    

                },
                { 
   value: 16.98, name: '完善校内人性化人行步道\n系统',
                                         itemStyle: { 
   
                    color: '#FF9966',
 
                  },
                },
                { 
   value: 11.32, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群',
                                                             itemStyle: { 
   
                    color: '#CC99CC',
 
                  },
                },
                { 
   value: 24.53, name: '美化现有建筑物环境和墙面'},
                { 
   value: 20.75, name: '开展主题化区域绿化\n(如桂花区香樟区等)'},
                { 
   value: 3.77, name: '其他'},
            ]
        },
    ]
};

在这里插入图片描述
模糊综合评价的图

echarts代码

var pathSymbols = { 
   
    reindeer: 'image://',
    plane: 'image://',
    rocket: 'image://',
    train: 'image://',
    ship: 'image://',
};


option = { 
   
    toolbox: { 
   
            show: true,
            feature: { 
   
                dataView: { 
   show:true},
                saveAsImage: { 
   
                    //excludeComponents :['toolbox'],
                    pixelRatio: 20
                }
            }
},
     backgroundColor:'' ,//设置无背景色
    tooltip: { 
   
        trigger: 'axis',
        axisPointer: { 
   
            type: 'none'
        },
        formatter: function (params) { 
   
            return params[0].name + ': ' + params[0].value;
        }
    },
    xAxis: { 
   
        data: ['很满意', '满意', '一般', '不满意', '很不满意'],
        axisTick: { 
   show: false},
        axisLine: { 
   show: false},
        axisLabel: { 
   
            color: '#e5435',
        textStyle: { 
   
          fontSize : 16      //更改坐标轴文字大小
        }
            
        }

    },
    yAxis: { 
   
        splitLine: { 
   show: false},
        axisTick: { 
   show: false},
        axisLine: { 
   show: true},
        offset: 40,
        axisLabel: { 
   show: true,
            textStyle: { 
   

                        fontSize: '13',//字体大小
                    },
            
            
        }
    },
    color: ['#242424'],
    series: [{ 
   
        name: 'hill',
        type: 'pictorialBar',
        barCategoryGap: '-80%',
        // symbol: 'path://M0,10 L10,10 L5,0 L0,10 z',
        symbol: 'path://M0,10 L10,10 C5.5,10 5.5,5 5,0 C4.5,5 4.5,10 0,10 z',
        itemStyle: { 
   
            opacity: 0.5
        },
        emphasis: { 
   
            itemStyle: { 
   
                opacity: 1
            }
        },
        data: [0.339, 0.441, 0.195, 0.02, 0.005],
        z: 10
    }, { 
   
        name: 'glyph',
        type: 'pictorialBar',
        barGap: '-100%',
        symbolPosition: 'end',
        symbolSize: 50,
        symbolOffset: [0, '-120%'],
        data: [{ 
   
            value: 0.339,
            symbol: pathSymbols.reindeer,
            symbolSize: [60, 55]
        }, { 
   
            value: 0.441,
            symbol: pathSymbols.rocket,
            symbolSize: [60, 55]
        }, { 
   
            value: 0.195,
            symbol: pathSymbols.plane,
            symbolSize: [60, 55]
        }, { 
   
            value: 0.02,
            symbol: pathSymbols.train,
            symbolSize: [60, 55]
        }, { 
   
            value: 0.005,
            symbol: pathSymbols.ship,
            symbolSize: [60, 55]
        }]
    }]
};

离散分布水平条形图

Discrete distribution as horizontal bar chart
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt


category_names = ['Strongly disagree', 'Disagree',
                  'Neither agree nor disagree', 'Agree', 'Strongly agree']
results = { 
   
    'Question 1': [10, 15, 17, 32, 26],
    'Question 2': [26, 22, 29, 10, 13],
    'Question 3': [35, 37, 7, 2, 19],
    'Question 4': [32, 11, 9, 15, 33],
    'Question 5': [21, 29, 5, 5, 40],
    'Question 6': [8, 19, 5, 30, 38]
}
def survey(results, category_names):
    """ Parameters ---------- results : dict A mapping from question labels to a list of answers per category. It is assumed all lists contain the same number of entries and that it matches the length of *category_names*. category_names : list of str The category labels. """
    labels = list(results.keys())
    data = np.array(list(results.values()))
    data_cum = data.cumsum(axis=1)
    category_colors = plt.get_cmap('RdYlGn')(
        np.linspace(0.15, 0.85, data.shape[1]))
    fig, ax = plt.subplots(figsize=(9.2, 5))
    ax.invert_yaxis()
    ax.xaxis.set_visible(False)
    ax.set_xlim(0, np.sum(data, axis=1).max())
    for i, (colname, color) in enumerate(zip(category_names, category_colors)):
        widths = data[:, i]
        starts = data_cum[:, i] - widths
        ax.barh(labels, widths, left=starts, height=0.5,
                label=colname, color=color)
        xcenters = starts + widths / 2
        r, g, b, _ = color
        text_color = 'white' if r * g * b < 0.5 else 'darkgrey'
        for y, (x, c) in enumerate(zip(xcenters, widths)):
            ax.text(x, y, str(int(c)), ha='center', va='center',
                    color=text_color)
    ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1),
              loc='lower left', fontsize='small')
    return fig, ax
survey(results, category_names)
plt.show()

多层圆环图

在这里插入图片描述

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
group_names=['吉祥物(73%)', '其他(3%)', '校花(16%)', '校树(8%)']
group_size=[2585,95,563,301]
subgroup_names=['', '','学生','', '','学生','', '','学生','', '','学生']
subgroup_size=[221	,36,	2328,34,	2	,59,56,	8	,499,62	,7,	232]
# Create colors
# 设置颜色
a, b, c,d=['#41555d','#646464','#969696','#DDDDDD']
# First Ring (outside)
# 外圈
fig, ax = plt.subplots()
# 设置等比例轴,x和y轴等比例
ax.axis('equal')
# 画饼图
mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, textprops={ 
   'fontsize': 12},colors=[a, b, c,d],wedgeprops=dict(width=0.3, edgecolor='white'));
# Second Ring (Inside)
# 画第二个圆
mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.3, labels=subgroup_names,textprops={ 
   'fontsize': 11}, labeldistance=0.7, colors=['#e9f1f6', '#e3f9fd','#a1afc9','#e9f1f6', '#e3f9fd','#FFCC99','#e9f1f6', '#e3f9fd','#c0ebd7','#e9f1f6', '#e3f9fd','#edd1d8'],wedgeprops=dict(width=0.6, edgecolor='white'));
# ax.labels()
plt.margins(0,0);

在这里插入图片描述


import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
group_names=['吉祥物(73%)', '其他(3%)', '校花(16%)', '校树(8%)']
group_size=[2585,95,563,301]
subgroup_names=['', '','学生','', '','学生','', '','学生','', '','学生']
subgroup_size=[221	,36,	2328,34,	2	,59,56,	8	,499,62	,7,	232]
# Create colors
# 设置颜色
a, b, c,d=['#a1afc9','#ffc64b','#7fecad','#DDDDDD']
# First Ring (outside)
# 外圈
fig, ax = plt.subplots()
# 设置等比例轴,x和y轴等比例
ax.axis('equal')
# 画饼图
mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, textprops={ 
   'fontsize': 12},colors=[a, b, c,d],wedgeprops=dict(width=0.3, edgecolor='white'));
# Second Ring (Inside)
# 画第二个圆
mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.5, 
                   labels=subgroup_names,textprops = dict(rotation_mode = 'anchor',
                                                          fontsize= 11, va='center', ha='center'), colors=['#FFFFFF', '#FFFFFF','#99CCFF','#FFFFFF', '#FFFFFF','#FFFF66','#FFFFFF', '#FFFFFF','#c0ebd7','#FFFFFF', '#FFFFFF','#edd1d8'],wedgeprops=dict(width=0.6, edgecolor='white'));
# ax.labels()
plt.margins(0,0);

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
size = 0.3
vals = np.array([[60., 32.,12], [37., 40.,20], [29., 10.,30]])

# cmap参数接受一个值(每个值代表一种配色方案),并将该值对应的颜色图分配给当前图窗。
cmap = plt.get_cmap("tab20c")
outer_colors = cmap(np.arange(3)*4)
inner_colors = cmap(np.array([1, 2,3, 5, 6,7, 9, 10,11]))

ax.pie(vals.sum(axis=1), radius=1, colors=outer_colors,
       wedgeprops=dict(width=size, edgecolor='w'))


ax.pie(vals.flatten(), radius=1-size, colors=inner_colors,
       wedgeprops=dict(width=size, edgecolor='w'))

ax.set(aspect="equal", title='Pie plot with `ax.pie`')
plt.show()

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt


y = [31.21,12.81,13.32,20.97,20.8,0.9]
y1 = [19.3,19.3,17.96,24.93,16.09,2.41]
y2 = [32.97,12.03,12.67,20.43,21.2,0.71]
y3= [11.32,13.21,18.87,24.53,30.19,1.89]
font = { 
   'family':'simhei',#这里必须要有第12行的操作前提
         'weight': 'normal',
         'size': 12,
         };

index=np.arange(len(y));
#x = ['REST','LAPT','AUTO']
x = ['吉祥物公仔','校服','文化摆件','实用工具','重要纪念日产品','其他'] #总共有几组,就设置成几,我们这里有三组,所以设置为3
fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(9,4))
plt.subplot(2,2,1)
plt.bar(x, y,label='教师、学生与校友 ',color='#4B4B4B',hatch='\\',width=0.5)
plt.xticks(rotation=15)
plt.legend(loc = "best",prop=font,labelspacing=1)
for a,b in zip(index,y):   #柱子上的数字显示
    plt.text(a,b,'%.2f'%b + '%',ha='center',va='bottom',fontsize=10);
# plt.tight_layout()
plt.subplot(2,2,2)
plt.barh(x, y1, color = "#969696",label='教师',hatch="/")
plt.legend(loc = "best",prop=font,labelspacing=1)
# plt.tight_layout()
plt.subplot(2,2,3)
plt.barh(x, y2, color = "#75878a",label='学生',hatch="//")
plt.legend(loc = "best",prop=font,labelspacing=1)
plt.tight_layout()
plt.subplot(2,2,4)
plt.barh(x, y3, color = "#DDDDDD",label='校友',hatch="///")
plt.legend(loc = "best",prop=font,labelspacing=1)
plt.tight_layout()
plt.show()
plt.savefig(r'C:\Users\Administrator\Desktop\ig_cat.jpg', dpi=500) #指定分辨率保存

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(6,5),dpi=150)
x1=np.array([1.5,10.52,87.89])
labels=["校友(1.5%)","教师(10.52%)","学生(87.89%)"]
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
plt.pie(x1,labels=labels,radius=1.0,
        wedgeprops=dict(width=0.4,edgecolor='w'), textprops={ 
   'fontsize': 12},colors=['#FFCC99','#CCFF66','#99CCFF'])
plt.show()

在这里插入图片描述

# 导入绘图模块 
import matplotlib.pyplot as plt 
# 构建数据 
price = [39.5, 39.9, 45.4, 38.9, 33.34] 
# 绘图 
plt.barh(range(5), price, align='center', color='steelblue', alpha=0.8) 
# 添加轴标签 
plt.xlabel('price') 
# 添加标题 
# plt.title('Books at different prices') 
# 添加刻度标签 
plt.yticks(range(5), ['a', 'b', 'c', 'd', 'e']) 
# 设置Y轴的刻度范围 
plt.xlim([32, 47]) 
# 为每个条形图添加数值标签 
for x, y in enumerate(price): 
    plt.text(y + 0.1, x, '%s' % y, va='center') 
plt.savefig('foo.png') 
# 显示图形 
plt.show() 

在这里插入图片描述

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns

sns.set(style="whitegrid")

df =pd.read_clipboard()
df

plt.rcParams['font.sans-serif'] = ['SimHei'] #用来显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

plt.rcParams['savefig.dpi'] = 100 # 图片像素
plt.rcParams['figure.dpi'] = 100 # 分辨率

x = df.index


fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(10,6))
plt.subplot(1,3,1)
sns.barplot(x,df['总的'],palette=sns.hls_palette(8 , l = .8, s = .5))
plt.xticks([]) # 不显示x轴
plt.ylabel('教师、学生与校友', fontsize=10)
plt.yticks([]) # 不显示y轴
# plt.title('教师、学生与校友')

plt.subplot(1.3,2)
sns.barplot(x,df['学生'],palette=sns.light_palette('red',reverse=False))
plt.xticks([]) # 不显示x轴
plt.ylabel('学生')
plt.yticks([]) # 不显示y轴


plt.subplot(1,3,3)
sns.barplot(x,df['教师'],palette=sns.color_palette('Greens'))
plt.xticks([]) # 不显示x轴
plt.ylabel('教师')
plt.yticks([]) # 不显示y轴

plt.subplot(4,1,4)
sns.barplot(x,df['校友'],palette=sns.color_palette('Blues'))
plt.xticks(rotation=14) # 不显示x轴
plt.ylabel('校友')
plt.yticks([]) # 不显示y轴
plt.tick_params(labelsize=8)
plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存

在这里插入图片描述

import pandas as pd
import time
import numpy as np

from matplotlib import pyplot as plt

dates = pd.date_range('20170101', periods=300)
df = pd.DataFrame(np.random.rand(300,4), index=dates, columns=list('ABCD'))
# ///按月份对商品数据求和
date_groupby = df.groupby(lambda x:pd.datetime.strftime(x,'%Y-%m')).apply(sum)
# ///统计四种商品的出货总量占比
date_sum = df.apply(sum)
date_ratio = date_sum/date_sum.sum()


fig = plt.figure(figsize=(8,9))

ax_0 = fig.add_subplot(3, 1, 1 )
ax_0_twin = ax_0.twinx()
ax_0_twin.bar(date_groupby.index,date_groupby["A"],width = 0.2,label = "A")
plt.ylim((0, 25))
ax_0.plot(date_groupby.index,date_groupby["B"],color = "r", label = "B")
ax_0_twin.set_title(r'Distribution over month',fontsize=15)
ax_0.legend(loc=2, prop={ 
   'size': 12})
ax_0_twin.legend(loc=1, prop={ 
   'size': 12})
ax_0.set_ylabel(r'B_count',fontsize=11)
ax_0_twin.set_ylabel(r'A_count',fontsize=11)


ax_1 = fig.add_subplot(3, 2, 3 )
rng = np.random.RandomState(10)
colors = rng.rand(50)
sc = ax_1.scatter(df["A"].iloc[0:50],df["B"].iloc[0:50], 
                  c=colors,s=100*df["C"].iloc[0:50])
plt.colorbar(sc)


ax_2 = fig.add_subplot(3, 2, 4 )
ax_2.pie(date_ratio,
        labels=date_ratio.index , autopct = '%3.1f%%',
       startangle = 180, shadow = True)


ax_3 = fig.add_subplot(3, 1, 3 )
ax_3.hist(df["A"],bins = 100)
ax_3.set_title(r'A hist over day',fontsize=15)

在这里插入图片描述

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.patches as mpatches
sns.set(style="whitegrid")

df =pd.read_clipboard()
df

plt.rcParams['font.sans-serif'] = ['SimHei'] #用来显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

x = df.index

fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(6,4))
plt.subplot(1,3,1)
sns.barplot(x,df['学生'],palette=sns.hls_palette(8 , l = .8, s = .5))
plt.xticks([]) # 不显示x轴
plt.xlabel('学生', fontsize=14)  
plt.yticks([]) # 不显示y轴
plt.ylabel(' ') 


ax=plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width , box.height])
patches=[mpatches.Patch(color='#DFBBB9', label='建设5G校园')]
ax.legend(handles=patches,  bbox_to_anchor=(1,1)) #生成legend


plt.subplot(1,3,2)
sns.barplot(x,df['教师'],palette=sns.hls_palette(8 , l = .8, s = .5))
plt.xticks([]) # 不显示x轴
plt.xlabel('教师', fontsize=14)
plt.yticks([]) # 不显示y轴
plt.ylabel(' ') 
ax=plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width , box.height])
patches=[mpatches.Patch(color='#B9DDDF', label='建设"只跑一次\n或一次不跑"\n高效管理服务平台')]
ax.legend(handles=patches,loc=2) #生成legend

        
plt.subplot(1,3,3)
sns.barplot(x,df['校友'],palette=sns.hls_palette(8 , l = .8, s = .5))
plt.xticks([]) # 不显示x轴
plt.xlabel('校友', fontsize=14)
plt.yticks([]) # 不显示y轴
plt.ylabel(' ') 
ax=plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width , box.height])
patches=[mpatches.Patch(color='#DFD8B9', label='打造凸显大学精神的\n网络文化产品')]
ax.legend(handles=patches,loc=1) #生成legend


plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存

相关系数热力图

import plotly.figure_factory as ff
corrs = df.corr()
figure = ff.create_annotated_heatmap(z=corrs.values,x=list(corrs.columns),y=list(corrs.index), annotation_text=corrs.round(2).values, showscale=True)

在这里插入图片描述

在这里插入图片描述

// 指定图表的配置项和数据
        var option = { 
   
            tooltip: { 
   
                trigger: 'item',
                formatter: "{a} <br/>{b}: {c} ({d}%)"
            },
            color:["#27D9C8","#D8D8D8"],
            title:{ 
   
                text:"80%",
                left:"center",
                top:"50%",
                textStyle:{ 
   
                    color:"#27D9C8",
                    fontSize:36,
                    align:"center"
                }
            },
            graphic:{ 
   
                type:"text",
                left:"center",
                top:"40%",
                style:{ 
   
                    text:"运动达标率",
                    textAlign:"center",
                    fill:"#333",
                    fontSize:20,
                    fontWeight:700
                }
            },
            series: [
                { 
   
                    name: '运动情况',
                    type: 'pie',
                    radius: ['65%', '70%'],
                    avoidLabelOverlap: false,
                    label: { 
   
                        normal: { 
   
                            show: false,
                            position: 'center'
                        },
                       
                    },
                    
                    data: [
                        { 
    value: 80, name: '已完成' },
                        { 
    value: 20, name: '未完成' },
                       
                    ]
                }
            ]
        };

在这里插入图片描述

var scale = 1;
var echartData = [{ 
   
    value: 2154,
    name: '曲阜师范大学'
}, { 
   
    value: 3854,
    name: '潍坊学院'
}, { 
   
    value: 3515,
    name: '青岛职业技术学院'
}, { 
   
    value: 3515,
    name: '淄博师范高等专科'
}, { 
   
    value: 3854,
    name: '鲁东大学'
}, { 
   
    value: 2154,
    name: '山东师范大学'
}]
var rich = { 
   
    yellow: { 
   
        color: "#ffc72b",
        fontSize: 30 * scale,
        padding: [5, 4],
        align: 'center'
    },
    total: { 
   
        color: "#ffc72b",
        fontSize: 40 * scale,
        align: 'center'
    },
    white: { 
   
        color: "#fff",
        align: 'center',
        fontSize: 14 * scale,
        padding: [21, 0]
    },
    blue: { 
   
        color: '#49dff0',
        fontSize: 16 * scale,
        align: 'center'
    },
    hr: { 
   
        borderColor: '#0b5263',
        width: '100%',
        borderWidth: 1,
        height: 0,
    }
}
option = { 
   
    backgroundColor: '#031f2d',
    title: { 
   
        text:'总考生数',
        left:'center',
        top:'53%',
        padding:[24,0],
        textStyle:{ 
   
            color:'#fff',
            fontSize:18*scale,
            align:'center'
        }
    },
    legend: { 
   
        selectedMode:false,
        formatter: function(name) { 
   
            var total = 0; //各科正确率总和
            var averagePercent; //综合正确率
            echartData.forEach(function(value, index, array) { 
   
                total += value.value;
            });
            return '{total|' + total + '}';
        },
        data: [echartData[0].name],
        // data: ['高等教育学'],
        // itemGap: 50,
        left: 'center',
        top: 'center',
        icon: 'none',
        align:'center',
        textStyle: { 
   
            color: "#fff",
            fontSize: 16 * scale,
            rich: rich
        },
    },
    series: [{ 
   
        name: '总考生数量',
        type: 'pie',
        radius: ['42%', '50%'],
        hoverAnimation: false,
        color: ['#c487ee', '#deb140', '#49dff0', '#034079', '#6f81da', '#00ffb4'],
        label: { 
   
            normal: { 
   
                formatter: function(params, ticket, callback) { 
   
                    var total = 0; //考生总数量
                    var percent = 0; //考生占比
                    echartData.forEach(function(value, index, array) { 
   
                        total += value.value;
                    });
                    percent = ((params.value / total) * 100).toFixed(1);
                    return '{white|' + params.name + '}\n{hr|}\n{yellow|' + params.value + '}\n{blue|' + percent + '%}';
                },
                rich: rich
            },
        },
        labelLine: { 
   
            normal: { 
   
                length: 55 * scale,
                length2: 0,
                lineStyle: { 
   
                    color: '#0b5263'
                }
            }
        },
        data: echartData
    }]
};

在这里插入图片描述

option = { 
   
        toolbox: { 
   
            show: true,
            feature: { 
   
                dataView: { 
   show:true},
                saveAsImage: { 
   
                    //excludeComponents :['toolbox'],
                    pixelRatio: 20
                }
            }
},
        legend: [{ 
   
            data: ['校领导', '中层干部', '教师、学生及校友'],
            icon: "roundRect",
            x:'center',
            y:'6%',
            textStyle: { 
    //图例文字的样式
                            fontSize: 14
                        },
        },{ 
   
            data: ['很满意', '满意', '一般', '不满意','很不满意'],
            icon: "roundRect",
            x:'center',
            y:'50%',
                        textStyle: { 
    //图例文字的样式
                            fontSize: 14
                        },
        }],
    tooltip: { 
   },
    dataset: { 
   
        source: [
            ['product', '很满意', '满意', '一般', '不满意','很不满意'],
            ['校领导', 16.1, 53.5, 23.6, 6.7,0.1],
            ['中层干部', 21, 48.4, 26.3, 4.1,0.2],
            ['教师、学生及校友', 33.9, 44.1, 19.5, 2,0.5]
        ]
    },
    xAxis: [
        
        { 
   type: 'category', gridIndex: 0,axisLabel: { 
   
                    fontSize: 15
                }},
        { 
   type: 'category', gridIndex: 1,axisLabel: { 
   
                    fontSize: 15
                }},
        
            
    ],
    yAxis: [
        { 
   gridIndex: 0},
        { 
   gridIndex: 1}
    ],
    grid: [
        { 
   bottom: '57%'},
        { 
   top: '57%'}
    ],
    series: [
        // These series are in the first grid.
        { 
   type: 'bar', seriesLayoutBy: 'row'},
        { 
   type: 'bar', seriesLayoutBy: 'row'},
        { 
   type: 'bar', seriesLayoutBy: 'row'},
        // These series are in the second grid.
        { 
   type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
        { 
   type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
        { 
   type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
        { 
   type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
        { 
   type: 'bar', xAxisIndex: 1, yAxisIndex: 1}
    ]
};

在这里插入图片描述

import pandas as pd #导入数据分析模块
import numpy as np
import matplotlib.pyplot as plt #导入绘图模块
plt.rcParams['font.sans-serif']='SimHei'
data=pd.read_excel(r"C:\Users\Administrator\Desktop\数据.xlsx",index_col='身份') #读取数据
row_sum=data.sum(axis=1).apply(float) #按行求和
partion_data=data.div(row_sum,axis=0) #计算行百分比
rows,cols=data.shape #数据尺寸
fig,ax=plt.subplots(nrows=2,ncols=2,figsize=(8, 6)) #建立饼图坑
axes=ax.flatten() #将坑位展平
labels_=list(data.columns)#设置标签
colors_=["aliceblue","antiquewhite","aqua","aquamarine",'#33FF66','#FF6699'] #设置饼图配色
for row in range(rows):
    explode=[0, 0, 0, 0,0,0] #初始化突出位置
    explode[labels_.index(partion_data.iloc[row,:].idxmax())]=0.09 #新的突出切片
    axes[row].pie(partion_data.iloc[row,:],autopct='%1.1f%%',labels=labels_,colors=colors_, explode=explode,shadow=True) #绘制子饼图
    axes[row].set_title(data.index[row]) #设置标题
    plt.subplots_adjust(left=None, bottom=None, right=None, top=None,wspace=0.6, hspace=0.3) #调整子图间距
    plt.savefig(r"C:\Users\Administrator\Desktop\pie.png",dpi=200) #保存图片


在这里插入图片描述
在这里插入图片描述

a = pd.read_excel('C:\\Users\\Administrator\\Desktop\\a.xlsx')
plt.figure(figsize=(8,8))
plt.subplot(611)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['GBRT'],linestyle='--',color='#808080',label='GBRT')
plt.title('y_true与梯度提升决策树预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.legend(loc=1, prop={ 
   'size': 10})
# plt.subplots_adjust(hspace=0.9)
plt.tight_layout()
plt.subplot(612)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['XGBoost'],linestyle='--',color='#808080',label='XGBoot')
plt.title('y_true与XGBRegressor预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.subplots_adjust(left=None, bottom=0.2, right=None, top=0.5, wspace=None, hspace=None)
plt.legend(loc=1, prop={ 
   'size': 10})
plt.tight_layout()
plt.subplot(613)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['ElasticNet'],linestyle='--',color='#808080',label='弹性网络')
plt.title('y_true与弹性网络预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.legend(loc=1, prop={ 
   'size': 10})
plt.tight_layout()
plt.subplot(614)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['BayesianRidge'],linestyle='--',color='#808080',label='贝叶斯岭回归')
plt.title('y_true与贝叶斯岭回归预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.legend(loc=1, prop={ 
   'size': 10})
plt.tight_layout()
plt.subplot(615)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['Bagging'],linestyle='--',color='#808080',label='Bagging')
plt.title('y_true与Bagging预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.legend(loc=1, prop={ 
   'size': 10})
plt.tight_layout()
plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存

.在这里插入图片描述

library(tidyverse)
library(ggthemes)
coutry<-c('英国','中国大陆','美国','其他','澳大利亚','法国','日本','加拿大')
rate<-c(29.8,22.9,17.7,15.8,1,4.8,4.3,3.6)

rate_per<-paste(as.character(rate),'%',sep='')
ad<-data.frame(type=coutry,n=rate,rate_per=rate_per)

#ad = data.frame(type = c("Poster", "Billboard", "Bus", "Digital"),n = c(529, 356, 59, 81))
ad$fraction = ad$n / sum(ad$n)
ad$ymax = cumsum(ad$fraction)
ad$ymin = c(0, head(ad$ymax, n = -1))

p<-ggplot(data = ad, aes(fill = type, ymax = ymax, ymin = ymin, xmax = 4, xmin = 3)) +
  geom_rect(show.legend = F,alpha=0.8) +
  scale_fill_brewer(palette = 'Set3')+
  coord_polar(theta = "y") +
  labs(x = "", y = "", title = "",fill='地区') + 
  xlim(c(0, 5)) +
  theme_light() +
  theme(panel.grid=element_blank()) + ## 去掉白色外框
  theme(axis.text=element_blank()) + ## 把图旁边的标签去掉
  theme(axis.ticks=element_blank()) + ## 去掉左上角的坐标刻度线
  theme(panel.border=element_blank()) + ## 去掉最外层的正方形边框
  geom_text(aes(x = 4.6, y = ((ymin+ymax)/2),label = type) ,size=4)+
  geom_text(aes(x = 3.5, y = ((ymin+ymax)/2),label = rate_per) ,size=3.6)

ggsave('环形.png')

分布图

在这里插入图片描述

library(ggplot2)
library(plyr)

set.seed(1234)

df = read.table('儿童呼吸道疾病.txt',header=T)
head(df)
mu <- ddply(df, 'Sex', summarise, grp.mean=mean(Height))

ggplot(df, aes(x=Height, fill=Sex)) +
geom_histogram(aes(y=..density..), alpha=0.3,position='identity') +
geom_density(alpha=0.3) +
geom_vline(data=mu, aes(xintercept=grp.mean,color=Sex),linetype='dashed') +
scale_color_grey() +
theme_classic()+
theme(legend.position='top')

在这里插入图片描述

# Data
data <- data.frame(
  name = c("DD","with himself","with DC","with Silur" ,"DC","with himself","with DD","with Silur" ,"Silur","with himself","with DD","with DC" ),
  average = sample(seq(1,10) , 12 , replace=T),
  number = sample(seq(4,39) , 12 , replace=T)
)

# Increase bottom margin
par(mar=c(6,4,4,4))


# Basic Barplot
my_bar <- barplot(data$average , border=F , names.arg=data$name , 
                  las=2 , 
                  col=c(rgb(0.3,0.1,0.4,0.6) , rgb(0.3,0.5,0.4,0.6) , rgb(0.3,0.9,0.4,0.6) ,  rgb(0.3,0.9,0.4,0.6)) , 
                  ylim=c(0,13) , 
                  main="" )

# Add abline
abline(v=c(4.9 , 9.7) , col="grey")
 
# Add the text 
text(my_bar, data$average+0.4 , paste("n: ", data$number, sep="") ,cex=1) 
 
#Legende
legend("topleft", legend = c("Alone","with Himself","With other genotype" ) , 
     col = c(rgb(0.3,0.1,0.4,0.6) , rgb(0.3,0.5,0.4,0.6) , rgb(0.3,0.9,0.4,0.6) ,  rgb(0.3,0.9,0.4,0.6)) , 
     bty = "n", pch=20 , pt.cex = 2, cex = 0.8, horiz = FALSE, inset = c(0.05, 0.05))

在这里插入图片描述

# -*- coding: utf-8 -*-
""" Created on Thu Dec 17 22:12:50 2020 @author: Administrator """


import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

labels = ['TE','PTE','SE']


y1 = [0.885,0.952,0.929]
y2 = [0.909,0.978,0.930]
y3= [0.921,0.988,0.932]
fig,ax = plt.subplots(1,1,figsize=(8,4.5))

x = np.arange(len(labels))

total_width, n = 0.8, 3
width = total_width / n
x = x - (total_width - width) / 2

label_font = { 
   
    'weight':'bold',
    'size':14,
    'family':'simsun'
}

colors = ['#9999FF','#58C9B9','#CC33CC','#D1B6E1','#99FF99','#C0C0C0']

rects1 = ax.bar(x, y1, width, label='2017年',ec='k',color='#DDDDDD',lw=.8,
               hatch='xx')
rects2 = ax.bar(x + width, y2, width, label='2018年',ec='k',color='#DDDDDD',
                lw=.8,hatch='')
rects3 = ax.bar(x + width * 2, y3, width, label='2019年',ec='k',color='#DDDDDD',
                lw=.8,hatch='//')



# tick_params参数刻度线样式设置
# ax.tick_params(axis=‘x’, tickdir=‘in’, labelrotation=20)参数详解
# axis : 可选{‘x’, ‘y’, ‘both’} ,选择对哪个轴操作,默认是’both’
# which : 可选{‘major’, ‘minor’, ‘both’} 选择对主or副坐标轴进行操作
# direction/tickdir : 可选{‘in’, ‘out’, ‘inout’}刻度线的方向
# color : 刻度线的颜色,我一般用16进制字符串表示,eg:’#EE6363’
# width : float, 刻度线的宽度
# size/length : float, 刻度线的长度
# pad : float, 刻度线与刻度值之间的距离
# labelsize : float/str, 刻度值字体大小
# labelcolor : 刻度值颜色
# colors : 同时设置刻度线和刻度值的颜色
# bottom, top, left, right : bool, 分别表示上下左右四边,是否显示刻度线,True为显示
ax.tick_params(which='major',direction='in',length=5,width=1.5,labelsize=11,bottom=False)
ax.tick_params(axis='x',labelsize=11,bottom=False,labelrotation=0)


ax.set_xticks(range(len(labels)))
# ax.set_yticks([0,0.2,0.4,0.6,0.8,1])
ax.set_ylim(ymin = 0,ymax = 1.1)
# 0 - 1800 ,200为一个间距
ax.set_yticks(np.arange(0,1.1,0.2))


ax.set_ylabel('(效率值)',fontdict=label_font)
ax.set_xticklabels(labels,fontdict=label_font)
ax.legend(prop =label_font,loc='center', bbox_to_anchor=(0.5,1),ncol=4,frameon=False,shadow=False)

''' # 设置有边框和头部边框颜色为空right、top、bottom、left ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') '''
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# # 上下左右边框线宽
# linewidth = 2
# for spine in ['top','bottom','left','right']:
# ax.spines[spine].set_linewidth(linewidth)


# Add some text for labels, title and custom x-axis tick labels, etc.
# def autolabel(rects):
# for rect in rects:
# height = rect.get_height()
# ax.annotate('{}'.format(height),
# xy=(rect.get_x() + rect.get_width() / 2, height),
# xytext=(0, 3), 
# textcoords="offset points",
# ha='center', va='bottom')
        
# autolabel(rects1)
# autolabel(rects2)
# autolabel(rects3)
# fig.tight_layout()

plt.savefig(r'C:\Users\Administrator\Desktop\p1.png',dpi=500)

https://blog.csdn.net/luohenyj/article/details/108348697
在这里插入图片描述

from palettable.colorbrewer.qualitative import Pastel1_7
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal"))
recipe = ["标签1",
          "标签2",
          "标签3",
          "标签4",
          "标签5",
          "标签6"]
data = [225, 90, 50, 60, 100, 25]
wedges, texts = ax.pie(data,colors=Pastel1_7.hex_colors,wedgeprops=dict(width=0.5), startangle=-40)
# 每一类别说明框
# boxstyle框的类型,fc填充颜色,ec边框颜色,lw边框宽度
bbox_props = dict(boxstyle="square,pad=0.3", fc='white', ec="black", lw=0.72)
# 设置框引出方式
kw = dict(arrowprops=dict(arrowstyle="-"),
          bbox=bbox_props, zorder=0, va="center")

# 添加标签
for i, p in enumerate(wedges):
    ang = (p.theta2 - p.theta1)/2. + p.theta1
    y = np.sin(np.deg2rad(ang))
    x = np.cos(np.deg2rad(ang))
    # 设置方向
    horizontalalignment = { 
   -1: "right", 1: "left"}[int(np.sign(x))]
    connectionstyle = "angle,angleA=0,angleB={}".format(ang)
    kw["arrowprops"].update({ 
   "connectionstyle": connectionstyle})
    # 设置标注
    ax.annotate(recipe[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),
                horizontalalignment=horizontalalignment,color='black', **kw)

ax.set_title("Matplotlib bakery: A donut")
plt.show();

在这里插入图片描述

import matplotlib.pyplot as plt
group_names=['groupA', 'groupB', 'groupC']
group_size=[12,11,30]
subgroup_names=['A.1', 'A.2', 'A.3', 'B.1', 'B.2', 'C.1', 'C.2', 'C.3', 'C.4', 'C.5']
subgroup_size=[4,3,5,6,5,10,5,5,4,6]
a, b, c=[plt.cm.Blues, plt.cm.Reds, plt.cm.Greens]
fig, ax = plt.subplots()
ax.axis('equal')
mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, colors=[a(0.6), b(0.6), c(0.6)],wedgeprops=dict(width=0.3, edgecolor='white'));
mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.3, labels=subgroup_names, labeldistance=0.7, colors=[a(0.5), a(0.4), a(0.3), b(0.5), b(0.4), c(0.6), c(0.5), c(0.4), c(0.3), c(0.2)],wedgeprops=dict(width=0.4, edgecolor='white'));
plt.margins(0,0);

在这里插入图片描述

import matplotlib.pyplot as plt
names='groupA', 'groupB', 'groupC', 'groupD',
size=[12,11,3,30]
from palettable.colorbrewer.qualitative import Pastel1_7
plt.pie(size, labels=names, colors=Pastel1_7.hex_colors,wedgeprops=dict(width=0.3, edgecolor='w'))
plt.axis('equal') 
plt.show();

https://zhuanlan.zhihu.com/p/140945416
在这里插入图片描述

import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.globals import ThemeType
from pyecharts.commons.utils import JsCode

b = ["a","b"]
c = [50,80]
d = [54,90]

df_pie = pd.DataFrame({ 
   '类别':b,'值1':c,'值2':d})

fn = """ function(params) { if(params.name == '其他') return '\\n\\n\\n' + params.name + ' : ' + params.value + '%'; return params.name + ' : ' + params.value + '%'; } """

def new_label_opts():
    return opts.LabelOpts(formatter=JsCode(fn), position="center")


c = (
    Pie(init_opts=opts.InitOpts(width="800px", height="450px",theme = ThemeType.VINTAGE ))
    .add(
        "值1",
        df_pie[["类别","值1"]].values.tolist(),
        center=["28%", "50%"],
        radius=[90, 110],
        label_opts=new_label_opts(),
    )
    .add(
        "死亡数",
        df_pie[["类别","值2"]].values.tolist(),
        center=["68%", "50%"],
        radius=[90, 110],
        label_opts=new_label_opts(),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="Python双圆环图)",pos_bottom = "85%", pos_right = "39%"),
        legend_opts=opts.LegendOpts(
            is_show=1,type_="scroll", pos_top="2%", pos_left="43%", orient="horizontal"
        ),
            toolbox_opts=opts.ToolboxOpts(
            # 是否显示该工具
            is_show=True,
            ),
    )
    .set_series_opts(label_opts = opts.LabelOpts(is_show=1,formatter="{a}:\n{b}:{c}\n占比:{d}%") )
    .render("mutiple_pie.html")
)

https://zhuanlan.zhihu.com/p/62748885
在这里插入图片描述

def getFrinendSex():#获取好友性别
    auto_login(hotReload=True)
    a=get_friends()
    ls=[]
    for i in a:
        ls.append(i['Sex'])#性别字典键
    a=['男','女','未知']
    b=dict(zip(a,Counter(ls).values()))#counter统计列表中代表性别的元素(0,1,2)的个数,并替换成指定的列表a
    shareN=[v/sum(b.values()) for v in b.values()]#计算各类别占比,形成列表
    plt.figure(figsize=(6.4,6.4),facecolor='b')
    plt.pie(x=shareN,radius=1.5,labels=a,pctdistance=1.2,labeldistance=0.8,colors=['cornflowerblue','violet','lightgreen'])
    plt.pie(x=[1],radius=0.9,colors='w')#叠加一个空白的Piel图,形成环形
    plt.rcParams['font.sans-serif'] = ['SimHei']#中文标签需要这个字体才能显示
    plt.text(-0.7,-0.1,'微信好友性别比例',fontsize=24)#向中间空白填充此词组
    plt.savefig('RawenWechatFriendSex.jpg',dpi=100)

内嵌环形饼图
https://blog.csdn.net/bubid/article/details/108095414?utm_medium=distribute.wap_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-7.wap_blog_relevant_pic&depth_1-utm_source=distribute.wap_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-7.wap_blog_relevant_pic

在这里插入图片描述

有道:1
在这里插入图片描述
有道:2
在这里插入图片描述
当是一个二维表时,可以做堆叠柱形图

有道:3

在这里插入图片描述

1

2

3

4
在这里插入图片描述

#提取会员不同性别人数
male = pd.value_counts(data['GENDER'])['男']
female = pd.value_counts(data['GENDER'])['女']
#绘制会员性别比例饼图
fig = plt.figure(figsize=(7, 4))  #设置画布大小
plt.pie([male, female], labels=['男', '女'], colors=['lightskyblue', 'lightcoral'], autopct='%1.1f%%')
plt.title('会员性别比例')
plt.show()
plt.close()

在这里插入图片描述

今天的文章绘图杂记【1】Python、R等绘图分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/12075.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注