小知识,大挑战!本文正在参与“程序员必备小知识”创作活动。
本文已参与「掘力星计划」,赢取创作大礼包,挑战创作激励金。
控制刻度间距
目前为止,我们让Matplotlib自动处理刻度在坐标轴上的位置,但有时我们需要覆盖默认的坐标轴刻度配置,以便更加快速估计图形中点的坐标。
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
x = np.linspace(-20, 20, 1024)
y = np.sinc(x)
ax = plt.axes()
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(1))
plt.plot(x, y, c = 'm')
plt.show()
以上代码,强制水平刻度每隔5个单位步长呈现一次。此外,我们还添加了副刻度,副刻度的间隔为1个单位步长,步骤说明如下:
- 首先实例化一个Axes对象——用于管理图形中的坐标轴:
ax=plot.Axes()
。 - 然后使用
Locator
实例设置x轴(ax.xaxis)或y轴(ax.yaxis)的主刻度和副刻度。
也为副刻度添加辅助网格:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
x = np.linspace(-20, 20, 1024)
y = np.sinc(x)
ax = plt.axes()
ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(1))
plt.grid(True, which='both', ls='dashed')
plt.plot(x, y, c = 'm')
plt.show()
Tips:我们已经知道,可以使用plt.grid()添加辅助网格,但此函数还有一个可选参数which,它具有三个可选值:"minor"、"major"和"both",分别用于仅显示副刻度、仅显示主刻度、主副刻度同时显示。
控制刻度标签
是时候介绍刻度标签的设置了,刻度标签是图形空间中的坐标,虽然数字刻度标签对于大多说场景来说是足够的,但是却并不总是能够满足需求。例如,我们需要显示100个公司的营收情况,这时候我们就需要横坐标刻度标签为公司名,而非数字;同样对于时间序列,我们希望横坐标刻度标签为日期…。考虑到此类需求,我们需要使用Matplotlib为此提供了的API控制刻度标签。 可以按以下步骤为任何Matplotlib图形设置刻度标签:
import numpy as np
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
name_list = ('Apple', 'Orange', 'Banana', 'Pear', 'Mango')
value_list = np.random.randint(0, 99, size = len(name_list))
pos_list = np.arange(len(name_list))
ax = plt.axes()
ax.xaxis.set_major_locator(ticker.FixedLocator((pos_list)))
ax.xaxis.set_major_formatter(ticker.FixedFormatter((name_list)))
plt.bar(pos_list, value_list, color = 'c', align = 'center')
plt.show()
Tips:我们首先使用ticker.Locator实例来生成刻度的位置,然后使用ticker.Formatter实例将为刻度生成标签。FixedFormatter从字符串列表中获取标签,然后用Formatter实例设置坐标轴。同时,我们还使用了FixedLocator来确保每个标签中心都正好与刻度中间对齐。
更简单的设置方式
虽然使用上述方法可以控制刻度标签,但可以看出此方法过于复杂,如果刻度标签是固定的字符列表,那么可以用以下简单的设置方法:
import numpy as np
import matplotlib.pyplot as plt
name_list = ('Apple', 'Orange', 'Banana', 'Pear', 'Mango')
value_list = np.random.randint(0, 99, size = len(name_list))
pos_list = np.arange(len(name_list))
plt.bar(pos_list, value_list, color = 'c', align = 'center')
plt.xticks(pos_list, name_list)
plt.show()
Tips:使用plt.xticks()函数为一组固定的刻度提供固定标签,此函数接受位置列表和名称列表作为参数值,可以看出,此方法比第一种方法实现起来更简单。
高级刻度标签控制
不仅可以使用固定标签,使用ticker API可以使用函数生成的标签:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
def make_label(value, pos):
return '%0.1f%%' % (100. * value)
ax = plt.axes()
ax.xaxis.set_major_formatter(ticker.FuncFormatter(make_label))
x = np.linspace(0, 1, 256)
plt.plot(x, np.exp(-10 * x), c ='c')
plt.plot(x, np.exp(-5 * x), c= 'c', ls = '--')
plt.show()
在此示例中,刻度标签是由自定义函数make_label生成的。此函数以刻度的坐标作为输入,并返回一个字符串作为坐标标签,这比给出固定的字符串列表更灵活。为了使用自定义函数,需要使用FuncFormatter实例——一个以函数为参数的格式化实例。
这种将生成标签的实际任务指派给其他函数的方法称为委托(delegation)模式,这是一种漂亮的编程技术。比方说,我们要将每个刻度显示为日期,这可以使用标准的Python时间和日期函数完成:
import numpy as np
import datetime
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
start_date = datetime.datetime(1998, 1, 1)
def make_label(value, pos):
time = start_date + datetime.timedelta(days = 365 * value)
return time.strftime('%b %y')
ax = plt.axes()
ax.xaxis.set_major_formatter(ticker.FuncFormatter(make_label))
x = np.linspace(0, 1, 256)
plt.plot(x, np.exp(-10 * x), c ='c')
plt.plot(x, np.exp(-5 * x), c= 'c', ls = '--')
labels = ax.get_xticklabels()
plt.setp(labels, rotation = 30.)
plt.show()
Tips:可以利用ax.get_xticklabels()获取刻度标签实例,然后对标签进行旋转,以避免长标签之间重叠,旋转使用plt.setp()函数,其接受刻度标签实例和旋转角度作为参数值。
系列链接
今天的文章Matplotlib控制坐标轴刻度间距和标签分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/15384.html