JavaScript实现冒泡排序法、插入排序法、快速排序法

JavaScript实现冒泡排序法、插入排序法、快速排序法冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。 它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素列已经排序完成。 这…

1.冒泡排序法

1.1 概念

冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。

它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端(升序或降序排列),就如同碳酸饮料中二氧化碳的气泡最终会上浮到顶端一样,故名“冒泡排序”。

1.2 原理示意图

冒泡排序 流程图1

1.3 代码
const arr = [5, 2, 7, 8, 34, 7, 39, 12, 56, 9, 1]

  function bubbleSort(arr) {
    const len = arr.length
    // 外层循环i控制比较的轮数
    for (let i = 0; i < len; i++) {
      // 里层循环控制每一轮比较的次数j,arr[i] 只用跟其余的len - i个元素比较
      for (let j = 1; j < len - i; j++) {
        // 若前一个元素"大于"后一个元素,则两者交换位置
        if (arr[j - 1] > arr[j]) {
          [arr[j - 1], arr[j]] = [arr[j], arr[j - 1]]
        }
      }
    }
    return arr
  }

  console.log(bubbleSort(arr))	// [1, 2, 5, 7, 7, 8, 9, 12, 34, 39, 56]
  

改进的冒泡排序法:

function bubbleSort(arr) {
    let temp = null, flag = 1
    const len = arr.length
    for (let i = 0; i <= len - 1 && flag === 1; i++) {
      flag = 0
      for (let j = 0; j < len - i; j++) {
        if (arr[j] > arr[j + 1]) {
          temp = arr[j + 1]
          arr[j + 1] = arr[j]
          arr[j] = temp
          flag = 1// 发生数据交换flag置为1
        }
      }
    }
    return arr
  }

2.插入排序法

2.1 概念

一般也被称为直接插入排序(Insert Sort)。对于少量元素的排序,它是一个有效的算法。插入排序是一种最简单的排序方法,它的基本思想是将一个记录插入到已经排好序的有序表中,从而一个新的、记录数增1的有序表。在其实现过程使用双层循环,外层循环对除了第一个元素之外的所有元素,内层循环对当前元素前面有序表进行待插入位置查找,并进行移动。

插入排序是指在待排序的元素中,假设前面n-1(其中n>=2)个数已经是排好顺序的,现将第n个数插到前面已经排好的序列中,然后找到合适自己的位置,使得插入第n个数的这个序列也是排好顺序的。按照此法对所有元素进行插入,直到整个序列排为有序的过程,称为插入排序。

2.2 原理示意图

插入排序 插入排序的工作方式像许多人排序一手扑克牌。开始时,我们的左手为空并且桌子上的牌面向下。然后,我们每次从桌子上拿走一张牌并将它插入左手中正确的位置。为了找到一张牌的正确位置,我们从右到左将它与已在手中的每张牌进行比较。拿在左手上的牌总是排序好的,原来这些牌是桌子上牌堆中顶部的牌 。 插入排序

2.3 代码
  const arr = [5, 2, 7, 8, 34, 7, 39, 12, 56, 9, 1]

  function insertSort(arr) {
    const handle = [arr[0]], len = arr.length
    for (let i = 1; i <= len - 1; i++) {
      const current = arr[i]
      for (var j = handle.length - 1; j >= 0; j--) {
        if (current > handle[j]) {
          handle.splice(j + 1, 0, current)
          break
        }
        if (j === 0) {
          handle.unshift(current)
        }
      }
    }
    return handle
  }

  console.log(insertSort(arr))	// [1, 2, 5, 7, 7, 8, 9, 12, 34, 39, 56]
  

优化的插入排序法: 优化的插入排序

	//将arr[]按升序排列,插入排序法
  function insertSort(arr) {
    for (let i = 1; i < arr.length; i++) {
      //将arr[i]插入到arr[i-1],arr[i-2],arr[i-3]……之中
      for (let j = i; j > 0; j--) {
        if (arr[j] < arr[j - 1]) {
          [arr[j - 1], arr[j]] = [arr[j], arr[j - 1]]
        }
      }
    }
    return arr
  }

3.快速排序法

3.1 概念

快速排序(Quick Sort)是对冒泡排序的一种改进。

快速排序由C. A. R. Hoare在1960年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

3.2 原理示意图快速排序快速排序
3.3 代码
  const arr = [5, 2, 7, 8, 34, 7, 39, 12, 56, 9, 1]

  function quickSort(arr) {
    // 4.结束递归(当ary小于等于一项,则不用处理)
    if (arr.length <= 1) {
      return arr
    }
    // 1. 找到数组的中间项,在原有的数组中把它移除
    const middleIndex = Math.floor(arr.length / 2)
    const middle = arr.splice(middleIndex, 1)[0]
    // 2. 准备左右两个数组,循环剩下数组中的每一项,比当前项小的放到左边数组中,反之放到右边数组中
    const leftArr = [], rightArr = []
    for (let i = 0; i < arr.length; i++) {
      const current = arr[i]
      current < middle ? leftArr.push(current) : rightArr.push(current)

    }
    // 3. 递归方式让左右两边的数组持续这样处理,一直到左右两边都排好序为止。
    //(最后让左边+中间+右边拼接成最后的结果)
    return quickSort(leftArr).concat(middle, quickSort(rightArr))
  }

  console.log(bubbleSort(arr))	// [1, 2, 5, 7, 7, 8, 9, 12, 34, 39, 56]
  

对于这段代码的分析: 缺点:

  • 获取基准点使用了一个splice操作,在js中splice会对数组进行一次拷贝的操作,而它最坏的情况下复杂度为O(n),而O(n)代表着针对数组规模的大小进行了一次循环操作。
  • 首先我们每次执行都会使用到两个数组空间,产生空间复杂度。
  • concat操作会对数组进行一次拷贝,而它的复杂度也会是O(n)
  • 对大量数据的排序来说相对会比较慢

优点:

  • 代码简单明了,可读性强,易于理解
  • 非常适合用于面试笔试题

那么我们接下来用另外一种方式去实现快速排序

快速排序的实现方式二

image.png

从上面这张图,我们用一个指针i去做了一个分割

  • 初始化i = -1
  • 循环数组,找到比支点小的数就将i向右移动一个位置,同时与下标i交换位置
  • 循环结束后,最后将支点与i+1位置的元素进行交换位置
  • 最后我们会得到一个由i指针作为分界点,分割成从下标0-i,和 i+1到最后一个元素。

下面我们来看一下代码的实现,整个代码分成三部分,数组交换,拆分,qsort(主函数)三个部分

先写最简单的数组交换吧,这个大家应该都懂

function swap(A, i ,j){
  const t = A[i];
  A[i] = A[j];
  A[j] = t;
}

下面是拆分的过程,其实就是对指针进行移动,找到最后指针所指向的位置

/** *  * @param {*} A 数组 * @param {*} p 起始下标 * @param {*} r 结束下标 + 1 */
function dvide(A, p, r){
  // 基准点
  const pivot = A[r-1];
   
  // i初始化是-1,也就是起始下标的前一个
  let i = p - 1;
   
  // 循环
  for(let j = p; j < r-1; j++){
      // 如果比基准点小就i++,然后交换元素位置
      if(A[j] <= pivot){
          i++;
          swap(A, i, j);
      }
  }
  // 最后将基准点插入到i+1的位置
  swap(A, i+1, r-1);
  // 返回最终指针i的位置
  return i+1;
}

主程序主要是通过递归去重复的调用进行拆分,一直拆分到只有一个数字。

/** *  * @param {*} A  数组 * @param {*} p  起始下标 * @param {*} r  结束下标 + 1 */
function qsort(A, p, r){
   r = r || A.length;
   if(p < r - 1){
       const q = divide(A, p, r);
       qsort(A, p, q);
       qsort(A, q + 1, r);
   }
   return A;
}

完整代码

function swap(A, i, j) {
    const t = A[i];
    A[i] = A[j];
    A[j] = t;
}
​
/** * * @param {*} A 数组 * @param {*} p 起始下标 * @param {*} r 结束下标 + 1 */
function divide(A, p, r) {
const x = A[r - 1];
let i = p - 1;
​
for (let j = p; j < r - 1; j++) {
  if (A[j] <= x) {
    i++;
    swap(A, i, j);
  }
}
​
swap(A, i + 1, r - 1);
​
return i + 1;
}
​
/** *  * @param {*} A 数组 * @param {*} p 起始下标 * @param {*} r 结束下标 + 1 */
function qsort(A, p = 0, r) {
r = r || A.length;
​
if (p < r - 1) {
  const q = divide(A, p, r);
  qsort(A, p, q);
  qsort(A, q + 1, r);
}
​
return A;
}

总结

第二段的排序算法我们减少了两个O(n)的操作,得到了一定的性能上的提升,而第一种方法数据规模足够大的情况下会相对来说比较慢一些,快速排序在面试中也常常出现,为了笔试更好写一些可能会有更多的前端会选择第一种方式,但也会有一些为难人的面试官提出一些算法中的问题。而在实际的项目中,我觉得第一种方式可以少用。

4.十大排序空间复杂度和时间复杂度:

十大排序

今天的文章JavaScript实现冒泡排序法、插入排序法、快速排序法分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/15428.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注