定义
双曲函数(Hyperbolic Function)包括下列六种函数:
sinh / 双曲正弦: sinh(x) = [e^x – e^(-x)] / 2
cosh / 双曲余弦: cosh(x) = [e^x + e^(-x)] / 2
tanh / 双曲正切: tanh(x) = sinh(x) / cosh(x)=[e^x – e^(-x)] / [e^x + e^(-x)]
coth / 双曲余切: coth(x) = cosh(x) / sinh(x) = [e^x + e^(-x)] / [e^(x) – e^(-x)]
sech / 双曲正割: sech(x) = 1 / cosh(x) = 2 / [e^x + e^(-x)]
csch / 双曲余割: csch(x) = 1 / sinh(x) = 2 / [e^x – e^(-x)]
其中,
e是自然对数的底
e≈2.71828 18284 59045…= 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5!…+ 1/n! +…
e^x 表示 e的x次幂,展开成无穷幂级数是:
e^x=x^0/0! + x^1/1! + x^2/2! + x^3/3! + x^4/4! + x^5/5!…+ x^n/n! +…
如同点 (cost,sint) 定义一个圆,点 (cosh t, sinh t) 定义了右半直角双曲线 x^2 − y^2 = 1。这基于了很容易验证的恒等式
cosh^2(t) – sinh^2(t) = 1
和性质 t > 0 对于所有的 t。
双曲函数是带有复周期 2πi 的周期函数。
参数 t 不是圆角而是双曲角,它表示在 x 轴和连接原点和双曲线上的点 (cosh t, sinh t) 的直线之间的面积的两倍。
函数 cosh x 是关于 y 轴对称的偶函数。
函数 sinh x 是奇函数,就是说 -sinh x = sinh -x 且 sinh 0 = 0。
y=sinh(x).定义域:R.值域:R.奇函数.函数图像为过原点并且穿越Ⅰ,Ⅲ象限的严格单调递增曲线,当x->+∞时是(1/2)e^x的等价无穷大.函数图像关于原点对称.
y=cosh(x).定义域:R.值域:[1,+∞).偶函数.函数图像是悬链线,最低点是(0,1),在Ⅰ象限部分是严格单调递增曲线,当x->+∞时是(1/2)e^x的等价无穷大.函数图像关于y轴对称.
y=tanh(x).定义域:R.值域:(-1,1).奇函数.函数图像为过原点并且穿越Ⅰ,Ⅲ象限的严格单调递增曲线.其图像被限制在两渐近线y=1和y=-1之间.lim[x->+∞,tanh(x)=1],lim[x->-∞,tanh(x)=-1].
y=coth(x).定义域:{x|x≠0}.值域:{x||x|>1}.奇函数.函数图像分为两支,分别在Ⅰ,Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减.垂直渐近线为y轴,两水平渐近线为y=1和y=-1.lim[x->+∞,coth(x)=1],lim[x->-∞,coth(x)=-1].
y=sech(x).定义域:R.值域:(0,1].偶函数.最高点是(0,1),函数在(0,+∞)严格单调递减.x轴是其渐近线.lim[x->∞,sech(x)]=0.
y=csch(x).定义域:{x|x≠0}.值域:{x|x≠0}.奇函数.函数图像分为两支,分别在Ⅰ,Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减.垂直渐近线为y轴,两水平渐近线为x轴.lim[x->∞,csch(x)]=0.
双曲函数与三角函数有如下的关系:
* sinh x = -i * sin(i * x)
* cosh x = cos(i * x)
* tanh x = -i * tan(i * x)
* coth x = -i * cot(i * x)
* sech x = sec(i * x)
* csch x = i * csc(i * x)
i 为虚数单位,即 i * i = -1
与双曲函数有关的恒等式如下:
cosh^2(x) – sinh^2(x) =1
coth^2(x)-csch^2(x)=1
tanh^2(x)+sech^2(x)=1
* 加法公式:
sinh(x+y) = sinh(x) * cosh(y) + cosh(x) * sinh(y)
cosh(x+y) = cosh(x) * cosh(y) + sinh(x) * sinh(y)
tanh(x+y) = [tanh(x) + tanh(y)] / [1 + tanh(x) * tanh(y)]
* 减法公式:
sinh(x-y) = sinh(x) * cosh(y) – cosh(x) * sinh(y)
cosh(x-y) = cosh(x) * cosh(y) – sinh(x) * sinh(y)
tanh(x-y) = [tanh(x) – tanh(y)] / [1 – tanh(x) * tanh(y)]
* 二倍角公式:
sinh(2x) = 2 * sinh(x) * cosh(x)
cosh(2x) = cosh^2(x) + sinh^2(x) = 2 * cosh^2(x) – 1 = 2 * sinh^2(x) + 1
* 半角公式:
cosh^2(x / 2) = (cosh(x) + 1) / 2
sinh^2(x / 2) = (cosh(x) – 1) / 2
双曲函数的恒等式都在圆三角函数有相应的公式。Osborn’s rule指出:将圆三角函数恒等式中,圆函数转成相应的双曲函数,有两个sinh的积时(包括coth^2(x), tanh^2(x), csch^2(x), sinh(x) * sinh(y))则转换正负号,则可得到相应的双曲函数恒等式。如
* 三倍角公式:
sin(3 * x) = 3 * sin(x) − 4 * sin(2 * x)
sinh(3 * x) = 3 * sinh(x) + 4 * sinh(2 * x)
反双曲函数是双曲函数的反函数. 它们的定义为:
arsinh(x) = ln[x + sqrt(x^2 + 1)]
arcosh(x) = ln[x + sqrt(x^2 – 1)]
artanh(x) = ln[sqrt(1 – x^2) / (1 – x)] = ln[(1 + x) / (1 – x)] / 2
arcoth(x) = ln[sqrt(x^2 – 1) / (x – 1)] = ln[(x + 1) / (x – 1)] / 2
arsech(x) = ± ln[1 + sqrt(1 – x^2) / x]
arcsch(x) = ln[1 – sqrt(1 + x^2) / x] , 如果 x < 0
ln[1 + sqrt(1 + x^2) / x] , 如果 x > 0
其中,
sqrt 为 square root 的缩写 , 即平方根
(sinh(x))’=cosh(x)
(cosh(x))’=sinh(x)
(tanh(x))’=sech^2(x)
(coth(x))’=-csch^2(x)
(sech(x))’=-sech(x)tanh(x)
(csch(x))’=-csch(x)coth(x)
(arcsinh(x))’=1/sqrt(x^2+1)
(arccosh(x))’=1/sqrt(x^2-1) (x>1)
(arctanh(x))’=1/(1-x^2) (|x|<1)
(arccoth(x))’=1/(1-x^2) (|x|>1)
双曲函数与反双曲函数的不定积分
∫sinh(x)dx=cosh(x)+c
∫cosh(x)dx=sinh(x)+c
∫sech^2(x)dx=tanh(x)+c
∫csch^2(x)dx=-coth(x)+c
∫sech(x)tanh(x)dx=-sech(x)+c
∫csch(x)coth(x)dx=-csch(x)+c
∫tanh(x)dx=ln(cosh(x))+c
∫coth(x)dx=ln|sinh(x)|+c
∫sech(x)dx=arctan(sinh(x))+c=2arctan(e^x)+c1=2arctan(tanh(x/2))+c2
∫csch(x)dx=ln|coth(x)-csch(x)+c=ln|tanh(x/2)|+c
∫[1/sqrt(x^2+1)]dx=arcsinh(x)+c=ln(x+sqrt(x^2+1))+c
∫[1/sqrt(x^2-1)]dx=sgn(x)arccosh|x|+c=ln|x+sqrt(x^2-1)|+c
(sgn是符号函数.sgn(x)=x/|x|,x≠0;sgn(x)=0,x=0)
双曲函数与反双曲函数的级数表示
sinh(z)=z+z^3/3!+z^5/5!+z^7/7!+…+z^(2k-1)/(2k-1)!+… (z∈C)
cosh(z)=1+z^2/2!+z^4/4!+z^6/6!+…+z^(2k)/(2k)!+… (z∈C)
arcsinh(z)=z-(1/6)z^3+(3/40)z^5-(5/112)z^7+…+(-1)^k[(2k-1)!!/(2k)!!][z^(2k+1)/(2k+1)]+… (|z|<1)
arctanh(z)=z+z^3/3+z^5/5+z^7/7+…+z^(2k-1)/(2k-1)+… (|z|<1)
今天的文章双曲函数系列分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/25203.html