Linux驱动开发之Platform_device和Platform_driver

Linux驱动开发之Platform_device和Platform_driverhttp://blog.csdn.net/yili_xie/article/details/5187014从Linux2.6起引入了一套新的驱动管理和注册机制:Platform_device和Platform_driver。Linux中大部分的设备驱动,都可以使用这套机制,设备用Platform_device表示,驱动用Platform_driver进行注册。

http://blog.csdn.net/yili_xie/article/details/5187014

从Linux 2.6起引入了一套新的驱动管理和注册机制:Platform_device和Platform_driver。
Linux中大部分的设备驱动,都可以使用这套机制, 设备用Platform_device表示,驱动用Platform_driver进行注册。
 
Linux platform driver机制和传统的device driver 机制(通过driver_register函数进行注册)相比,一个十分明显的优势在于platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,并且拥有较好的可移植性和安全性(这些标准接口是安全的)。
 
Platform机制的本身使用并不复杂,由两部分组成:platform_device和platfrom_driver。
通过Platform机制开发发底层驱动的大致流程为:  定义 platform_device à 注册 platform_device à 定义 platform_driver à注册 platform_driver。
 
首先要确认的就是设备的资源信息,例如设备的地址,中断号等。
在2.6内核中platform设备用结构体platform_device来描述,该结构体定义在kernel/include/linux/platform_device.h中,
struct platform_device {

 const char * name;
 u32  id;
 struct device dev;
 u32  num_resources;
 struct resource * resource;
};
 
该结构一个重要的元素是resource,该元素存入了最为重要的设备资源信息,定义在kernel/include/linux/ioport.h中,
struct resource {

 const char *name;
 unsigned long start, end;
 unsigned long flags;
 struct resource *parent, *sibling, *child;
};
 
下面举s3c2410平台的i2c驱动作为例子来说明:
 
/* arch/arm/mach-s3c2410/devs.c */
/* I2C */
static struct resource s3c_i2c_resource[] = {

         [0] = {

                   .start = S3C24XX_PA_IIC,
                   .end = S3C24XX_PA_IIC + S3C24XX_SZ_IIC – 1,
                   .flags = IORESOURCE_MEM,
         },
         [1] = {

                   .start = IRQ_IIC, //S3C2410_IRQ(27)
                   .end = IRQ_IIC,
                   .flags = IORESOURCE_IRQ,
         }
};
 
这里定义了两组resource,它描述了一个I2C设备的资源,第1组描述了这个I2C设备所占用的总线地址范围,IORESOURCE_MEM表示第1组描述的是内存类型的资源信息,第2组描述了这个I2C设备的中断号,IORESOURCE_IRQ表示第2组描述的是中断资源信息。设备驱动会根据flags来获取相应的资源信息。
 
有了resource信息,就可以定义platform_device了:
 
 
 
struct platform_device s3c_device_i2c = {

         .name = “s3c2410-i2c”,
         .id = -1,
         .num_resources = ARRAY_SIZE(s3c_i2c_resource),
         .resource = s3c_i2c_resource,
};
定义好了platform_device结构体后就可以调用函数platform_add_devices向系统中添加该设备了,之后可以调用platform_driver_register()进行设备注册。要注意的是,这里的platform_device设备的注册过程必须在相应设备驱动加载之前被调用,即执行platform_driver_register之前,原因是因为驱动注册时需要匹配内核中所以已注册的设备名。
 
s3c2410-i2c的platform_device是在系统启动时,在cpu.c里的s3c_arch_init()函数里进行注册的,这个函数申明为arch_initcall(s3c_arch_init);会在系统初始化阶段被调用。
arch_initcall的优先级高于module_init。所以会在Platform驱动注册之前调用。(详细参考include/linux/init.h)
 
s3c_arch_init函数如下:
/* arch/arm/mach-3sc2410/cpu.c */
static int __init s3c_arch_init(void)
{

    int ret;
    ……
/* 这里board指针指向在mach-smdk2410.c里的定义的smdk2410_board,里面包含了预先定义的I2C Platform_device等. */
    if (board != NULL) {

        struct platform_device **ptr = board->devices;
        int i;

        for (i = 0; i < board->devices_count; i++, ptr++) {

            ret = platform_device_register(*ptr);    //在这里进行注册

            if (ret) {

                printk(KERN_ERR “s3c24xx: failed to add board device %s (%d) @%p/n”, (*ptr)->name,
ret, *ptr);
            }
        }
        /* mask any error, we may not need all these board
         * devices */
        ret = 0;
    }
    return ret;
}
 
同时被注册还有很多其他平台的platform_device,详细查看arch/arm/mach-s3c2410/mach-smdk2410.c里的smdk2410_devices结构体。
 
 
驱动程序需要实现结构体struct platform_driver,参考drivers/i2c/busses
/* device driver for platform bus bits */

static struct platform_driver s3c2410_i2c_driver = {

         .probe = s3c24xx_i2c_probe,
         .remove = s3c24xx_i2c_remove,
         .resume = s3c24xx_i2c_resume,
         .driver = {

                   .owner = THIS_MODULE,
                   .name = “s3c2410-i2c”,
         },
};
 
在驱动初始化函数中调用函数platform_driver_register()注册platform_driver,需要注意的是s3c_device_i2c结构中name元素和s3c2410_i2c_driver结构中driver.name必须是相同的,这样在platform_driver_register()注册时会对所有已注册的所有platform_device中的name和当前注册的platform_driver的driver.name进行比较,只有找到相同的名称的platfomr_device才能注册成功,当注册成功时会调用platform_driver结构元素probe函数指针,这里就是s3c24xx_i2c_probe,当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是:
struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num);
根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。
 
struct int platform_get_irq(struct platform_device *dev, unsigned int num);
获取资源中的中断号。
 
 
 
下面举s3c24xx_i2c_probe函数分析,看看这些接口是怎么用的。
前面已经讲了,s3c2410_i2c_driver注册成功后会调用s3c24xx_i2c_probe执行,下面看代码:
 
 
/* drivers/i2c/busses/i2c-s3c2410.c */

static int s3c24xx_i2c_probe(struct platform_device *pdev)
{

    struct s3c24xx_i2c *i2c = &s3c24xx_i2c;
    struct resource *res;
    int ret;
 
    /* find the clock and enable it */
 
    i2c->dev = &pdev->dev;
    i2c->clk = clk_get(&pdev->dev, “i2c”);
    if (IS_ERR(i2c->clk)) {

     dev_err(&pdev->dev, “cannot get clock/n”);
     ret = -ENOENT;
     goto out;
    }

    dev_dbg(&pdev->dev, “clock source %p/n”, i2c->clk);
    clk_enable(i2c->clk);

    /* map the registers */
    res = platform_get_resource(pdev, IORESOURCE_MEM, 0); /* 获取设备的IO资源地址 */
    if (res == NULL) {

     dev_err(&pdev->dev, “cannot find IO resource/n”);
     ret = -ENOENT;
     goto out;
    }
    
    i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1, pdev->name); /* 申请这块IO Region */
    
    if (i2c->ioarea == NULL) {

     dev_err(&pdev->dev, “cannot request IO/n”);
     ret = -ENXIO;
     goto out;
    }
    
    i2c->regs = ioremap(res->start, (res->end-res->start)+1); /* 映射至内核虚拟空间 */
    
    if (i2c->regs == NULL) {

     dev_err(&pdev->dev, “cannot map IO/n”);
     ret = -ENXIO;
     goto out;
    }
    
    dev_dbg(&pdev->dev, “registers %p (%p, %p)/n”, i2c->regs, i2c->ioarea, res);
    
    /* setup info block for the i2c core */
    i2c->adap.algo_data = i2c;
    i2c->adap.dev.parent = &pdev->dev;
    
    /* initialise the i2c controller */
    ret = s3c24xx_i2c_init(i2c);
    if (ret != 0)
     goto out;

    /* find the IRQ for this unit (note, this relies on the init call to ensure no current IRQs pending */
    
    res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); /* 获取设备IRQ中断号 */

    if (res == NULL) {

     dev_err(&pdev->dev, “cannot find IRQ/n”);
     ret = -ENOENT;
     goto out;
    }
    
    ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED, /* 申请IRQ */
     pdev->name, i2c);
    
    ……

    return ret;
    
}
 
小思考:
那什么情况可以使用platform driver机制编写驱动呢?
我的理解是只要和内核本身运行依赖性不大的外围设备(换句话说只要不在内核运行所需的一个最小系统之内的设备),相对独立的,拥有各自独自的资源(addresses and IRQs),都可以用platform_driver实现。如:lcd,usb,uart等,都可以用platfrom_driver写,而timer,irq等最小系统之内的设备则最好不用platfrom_driver机制,实际上内核实现也是这样的。

今天的文章Linux驱动开发之Platform_device和Platform_driver分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/26174.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注