Matlab提供了两种方法进行聚类分析。
一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;
另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。
1.Matlab中相关函数介绍
1.1 pdist函数
调用格式:Y=pdist(X,’metric’)
说明:用‘metric’指定的方法计算X 数据矩阵中对象之间的距离。’
X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。
metric’取值如下:
‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;
‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;
‘minkowski’:明可夫斯基距离;‘cosine’:
‘correlation’:‘hamming’:
‘jaccard’:‘chebychev’:Chebychev距离。
1.2 squareform函数
调用格式:Z=squareform(Y,..)
说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。
1.3 linkage函数
调用格式:Z=linkage(Y,’method’)
说明:用‘method’参数指定的算法计算系统聚类树。
今天的文章matlab聚类实验,实验3Matlab聚类分析分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/32557.html