1.binder通信概述
binder通信是一种client-server的通信结构,
1.从表面上来看,是client通过获得一个server的代理接口,对server进行直接调用;
2.实际上,代理接口中定义的方法与server中定义的方法是一一对应的;
3.client调用某个代理接口中的方法时,代理接口的方法会将client传递的参数打包成为Parcel对象;
4.代理接口将该Parcel发送给内核中的binder driver.
5.server会读取binder driver中的请求数据,如果是发送给自己的,解包Parcel对象,处理并将结果返回;
6.整个的调用过程是一个同步过程,在server处理的时候,client会block住。
2.service manager
Service Manager是一个linux级的进程,顾名思义,就是service的管理器。这里的service是什么概念呢?这里的service的概念和init过程中init.rc中的service是不同,init.rc中的service是都是linux进程,但是这里的service它并不一定是一个进程,也就是说可能一个或多个service属于同一个linux进程。在这篇文章中不加特殊说明均指android native端的service。
任何service在被使用之前,均要向SM(Service Manager)注册,同时客户端需要访问某个service时,应该首先向SM查询是否存在该服务。如果SM存在这个service,那么会将该service的handle返回给client,handle是每个service的唯一标识符。
SM的入口函数在service_manager.c中,下面是SM的代码部分
int main(int argc, char **argv)
{
struct binder_state *bs;
void *svcmgr = BINDER_SERVICE_MANAGER;
bs = binder_open(128*1024);
if (binder_become_context_manager(bs)) {
LOGE(“cannot become context manager (%s)/n”, strerror(errno));
return -1;
}
svcmgr_handle = svcmgr;
binder_loop(bs, svcmgr_handler);
return 0;
}
这个进程的主要工作如下:
1.初始化binder,打开/dev/binder设备;在内存中为binder映射128K字节空间;
2.指定SM对应的代理binder的handle为0,当client尝试与SM通信时,需要创建一个handle为0的代理binder,这里的代理binder其实就是第一节中描述的那个代理接口;
3.通知binder driver(BD)使SM成为BD的context manager;
4.维护一个死循环,在这个死循环中,不停地去读内核中binder driver,查看是否有可读的内容;即是否有对service的操作要求, 如果有,则调用svcmgr_handler回调来处理请求的操作。
5.SM维护了一个svclist列表来存储service的信息。
这里需要声明一下,当service在向SM注册时,该service就是一个client,而SM则作为了server。而某个进程需要与service通信时,此时这个进程为client,service才作为server。因此service不一定为server,有时它也是作为client存在的。
由于下面几节会介绍一些与binder通信相关的几个概念,所以将SM的功能介绍放在了后面的部分来讲。
应用和service之间的通信会涉及到2次binder通信。
1.应用向SM查询service是否存在,如果存在获得该service的代理binder,此为一次binder通信;
2.应用通过代理binder调用service的方法,此为第二次binder通信。
3.ProcessState
ProcessState是以单例模式设计的。每个进程在使用binder机制通信时,均需要维护一个ProcessState实例来描述当前进程在binder通信时的binder状态。
ProcessState有如下2个主要功能:
1.创建一个thread,该线程负责与内核中的binder模块进行通信,称该线程为Pool thread;
2.为指定的handle创建一个BpBinder对象,并管理该进程中所有的BpBinder对象。
3.1 Pool thread
在Binder IPC中,所有进程均会启动一个thread来负责与BD来直接通信,也就是不停的读写BD,这个线程的实现主体是一个IPCThreadState对象,下面会介绍这个类型。
下面是 Pool thread的启动方式:
ProcessState::self()->startThreadPool();
3.2 BpBinder获取
BpBinder主要功能是负责client向BD发送调用请求的数据。它是client端binder通信的核心对象,通过调用transact函数向BD发送调用请求的数据,它的构造函数如下:
BpBinder(int32_t handle);
通过BpBinder的构造函数发现,BpBinder会将当前通信中server的handle记录下来,当有数据发送时,会通知BD数据的发送目标。
ProcessState通过如下方式来获取BpBinder对象:
ProcessState::self()->getContextObject(handle);
在这个过程中,ProcessState会维护一个BpBinder的vector mHandleToObject,每当ProcessState创建一个BpBinder的实例时,回去查询mHandleToObject,如果对应的handle已经有binder指针,那么不再创建,否则创建binder并插入到mHandleToObject中。
ProcessState创建的BpBinder实例,一般情况下会作为参数构建一个client端的代理接口,这个代理接口的形式为BpINTERFACE,例如在与SM通信时,client会创建一个代理接口BpServiceManager.
4.IPCThreadState
IPCThreadState也是以单例模式设计的。由于每个进程只维护了一个ProcessState实例,同时ProcessState只启动一个Pool thread,也就是说每一个进程只会启动一个Pool thread,因此每个进程则只需要一个IPCThreadState即可。
Pool thread的实际内容则为:
IPCThreadState::self()->joinThreadPool();
ProcessState中有2个Parcel成员,mIn和mOut,Pool thread会不停的查询BD中是否有数据可读,如果有将其读出并保存到mIn,同时不停的检查mOut是否有数据需要向BD发送,如果有,则将其内容写入到BD中,总而言之,从BD中读出的数据保存到mIn,待写入到BD中的数据保存在了mOut中。
ProcessState中生成的BpBinder实例通过调用IPCThreadState的transact函数来向mOut中写入数据,这样的话这个binder IPC过程的client端的调用请求的发送过程就明了了。
IPCThreadState有两个重要的函数,talkWithDriver函数负责从BD读写数据,executeCommand函数负责解析并执行mIn中的数据。
5.主要基类
5.1基类IInterface
为server端提供接口,它的子类声明了service能够实现的所有的方法;
5.2基类IBinder
BBinder与BpBinder均为IBinder的子类,因此可以看出IBinder定义了binder IPC的通信协议,BBinder与BpBinder在这个协议框架内进行的收和发操作,构建了基本的binder IPC机制。
5.3基类BpRefBase
client端在查询SM获得所需的的BpBinder后,BpRefBase负责管理当前获得的BpBinder实例。
6.两个接口类
6.1 BpINTERFACE
如果client想要使用binder IPC来通信,那么首先会从SM出查询并获得server端service的BpBinder,在client端,这个对象被认为是server端的远程代理。为了能够使client能够想本地调用一样调用一个远程server,server端需要向client提供一个接口,client在在这个接口的基础上创建一个BpINTERFACE,使用这个对象,client的应用能够想本地调用一样直接调用server端的方法。而不用去关心具体的binder IPC实现。
下面看一下BpINTERFACE的原型:
class BpINTERFACE : public BpInterface<IINTERFACE>
顺着继承关系再往上看
template<typename INTERFACE>
class BpInterface : public INTERFACE, public BpRefBase
BpINTERFACE分别继承自INTERFACE,和BpRefBase;
● BpINTERFACE既实现了service中各方法的本地操作,将每个方法的参数以Parcel的形式发送给BD。
例如BpServiceManager的
virtual status_t addService(const String16& name, const sp<IBinder>& service)
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
data.writeStrongBinder(service);
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
return err == NO_ERROR ? reply.readExceptionCode() : err;
}
● 同时又将BpBinder作为了自己的成员来管理,将BpBinder存储在mRemote中,BpServiceManager通过调用BpRefBase的remote()来获得BpBinder指针。
6.2 BnINTERFACE
在定义android native端的service时,每个service均继承自BnINTERFACE(INTERFACE为service name)。BnINTERFACE类型定义了一个onTransact函数,这个函数负责解包收到的Parcel并执行client端的请求的方法。
顺着BnINTERFACE的继承关系再往上看,
class BnINTERFACE: public BnInterface<IINTERFACE>
IINTERFACE为client端的代理接口BpINTERFACE和server端的BnINTERFACE的共同接口类,这个共同接口类的目的就是保证service方法在C-S两端的一致性。
再往上看
class BnInterface : public INTERFACE, public BBinder
同时我们发现了BBinder类型,这个类型又是干什么用的呢?既然每个service均可视为一个binder,那么真正的server端的binder的操作及状态的维护就是通过继承自BBinder来实现的。可见BBinder是service作为binder的本质所在。
那么BBinder与BpBinder的区别又是什么呢?
其实它们的区别很简单,BpBinder是client端创建的用于消息发送的代理,而BBinder是server端用于接收消息的通道。查看各自的代码就会发现,虽然两个类型均有transact的方法,但是两者的作用不同,BpBinder的transact方法是向IPCThreadState实例发送消息,通知其有消息要发送给BD;而BBinder则是当IPCThreadState实例收到BD消息时,通过BBinder的transact的方法将其传递给它的子类BnSERVICE的onTransact函数执行server端的操作。
7. Parcel
Parcel是binder IPC中的最基本的通信单元,它存储C-S间函数调用的参数.但是Parcel只能存储基本的数据类型,如果是复杂的数据类型的话,在存储时,需要将其拆分为基本的数据类型来存储。
简单的Parcel读写不再介绍,下面着重介绍一下2个函数
7.1 writeStrongBinder
当client需要将一个binder向server发送时,可以调用此函数。例如
virtual status_t addService(const String16& name, const sp<IBinder>& service)
{
Parcel data, reply;
data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
data.writeString16(name);
data.writeStrongBinder(service);
status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
return err == NO_ERROR ? reply.readExceptionCode() : err;
}
看一下writeStrongBinder的实体
status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
{
return flatten_binder(ProcessState::self(), val, this);
}
接着往里看flatten_binder
status_t flatten_binder(const sp<ProcessState>& proc,
const sp<IBinder>& binder, Parcel* out)
{
flat_binder_object obj;
obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
if (binder != NULL) {
IBinder *local = binder->localBinder();
if (!local) {
BpBinder *proxy = binder->remoteBinder();
if (proxy == NULL) {
LOGE(“null proxy”);
}
const int32_t handle = proxy ? proxy->handle() : 0;
obj.type = BINDER_TYPE_HANDLE;
obj.handle = handle;
obj.cookie = NULL;
} else {
obj.type = BINDER_TYPE_BINDER;
obj.binder = local->getWeakRefs();
obj.cookie = local;
}
} else {
obj.type = BINDER_TYPE_BINDER;
obj.binder = NULL;
obj.cookie = NULL;
}
return finish_flatten_binder(binder, obj, out);
}
还是拿addService为例,它的参数为一个BnINTERFACE类型指针,BnINTERFACE又继承自BBinder,
BBinder* BBinder::localBinder()
{
return this;
}
所以写入到Parcel的binder类型为BINDER_TYPE_BINDER,同时你在阅读SM的代码时会发现如果SM收到的service的binder类型不为BINDER_TYPE_HANDLE时,SM将不会将此service添加到svclist,但是很显然每个service的添加都是成功的,addService在开始传递的binder类型为BINDER_TYPE_BINDER,SM收到的binder类型为BINDER_TYPE_HANDLE,那么这个过程当中究竟发生了什么?
为了搞明白这个问题,花费我很多的事件,最终发现了问题的所在,原来在BD中做了如下操作(drivers/staging/android/Binder.c):
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply)
{
……………………………………
if (fp->type == BINDER_TYPE_BINDER)
fp->type = BINDER_TYPE_HANDLE;
else
fp->type = BINDER_TYPE_WEAK_HANDLE;
fp->handle = ref->desc;
……………………………………
}
阅读完addService的代码,你会发现SM只是保存了service binder的handle和service的name,那么当client需要和某个service通信了,如何获得service的binder呢?看下一个函数
7.2 readStrongBinder
当server端收到client的调用请求之后,如果需要返回一个binder时,可以向BD发送这个binder,当IPCThreadState实例收到这个返回的Parcel时,client可以通过这个函数将这个被server返回的binder读出。
sp<IBinder> Parcel::readStrongBinder() const
{
sp<IBinder> val;
unflatten_binder(ProcessState::self(), *this, &val);
return val;
}
往里查看unflatten_binder
status_t unflatten_binder(const sp<ProcessState>& proc,
const Parcel& in, sp<IBinder>* out)
{
const flat_binder_object* flat = in.readObject(false);
if (flat) {
switch (flat->type) {
case BINDER_TYPE_BINDER:
*out = static_cast<IBinder*>(flat->cookie);
return finish_unflatten_binder(NULL, *flat, in);
case BINDER_TYPE_HANDLE:
*out = proc->getStrongProxyForHandle(flat->handle);
return finish_unflatten_binder(
static_cast<BpBinder*>(out->get()), *flat, in);
}
}
return BAD_TYPE;
}
发现如果server返回的binder类型为BINDER_TYPE_BINDER的话,也就是返回一个binder引用的话,直接获取这个binder;如果server返回的binder类型为BINDER_TYPE_HANDLE时,也就是server返回的仅仅是binder的handle,那么需要重新创建一个BpBinder返回给client。
有上面的代码可以看出,SM保存的service的binder仅仅是一个handle,而client则是通过向SM获得这个handle,从而重新构建代理binder与server通信。
这里顺带提一下一种特殊的情况,binder通信的双方即可作为client,也可以作为server.也就是说此时的binder通信是一个半双工的通信。那么在这种情况下,操作的过程会比单工的情况复杂,但是基本的原理是一样的,有兴趣可以分析一下MediaPlayer和MediaPlayerService的例子。
8. 经典桥段分析
main_ mediaserver.cpp
int main(int argc, char** argv)
{
//创建进程mediaserver的ProcessState实例
sp<ProcessState> proc(ProcessState::self());
//获得SM的BpServiceManager
sp<IServiceManager> sm = defaultServiceManager();
LOGI(“ServiceManager: %p”, sm.get());
//添加mediaserver中支持的service。
AudioFlinger::instantiate();
MediaPlayerService::instantiate();
CameraService::instantiate();
AudioPolicyService::instantiate();
//启动ProcessState的pool thread
ProcessState::self()->startThreadPool();
//这一步有重复之嫌,加不加无关紧要。
IPCThreadState::self()->joinThreadPool();
}
9. Java 层的binder机制
了解了native通信机制后,再去分析JAVA层的binder机制,就会很好理解了。它只是对native的binder做了一个封装。这一部分基本上没有太复杂的过程,这里不再赘述了。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/36173.html