拉普拉斯变换解微分方程

拉普拉斯变换解微分方程使用拉普拉斯变换解一阶、二阶微分方程。一、核心内容拉氏变换对时域s域eat\displaystylee^{at}eat1s−a\displaystyle\frac{1}{s-a}s−a1​1\displaystyle111s\displaystyle\frac{1}{s}s1​t\displaystylett1s2\displaystyle\frac{1}{s^2}s21​t2\displaystylet^2t22s3\displayst

使用拉普拉斯变换解一阶、二阶微分方程。

一、核心内容

  1. 拉氏变换对
时域 s域
e a t \displaystyle e^{at} eat 1 s − a \displaystyle \frac{1}{s-a} sa1
1 \displaystyle 1 1 1 s \displaystyle \frac{1}{s} s1
t \displaystyle t t 1 s 2 \displaystyle \frac{1}{s^2} s21
t 2 \displaystyle t^2 t2 2 s 3 \displaystyle \frac{2}{s^3} s32
  1. 导数的拉氏变换
    f ′ ( x ) = s F ( x ) − f ( 0 ) f ′ ′ ( x ) = s 2 F ( x ) − s f ( 0 ) − f ′ ( 0 ) f'(x) = sF(x) – f(0) \\ f”(x) = s^2F(x) – sf(0) – f'(0) f(x)=sF(x)f(0)f(x)=s2F(x)sf(0)f(0)
  2. 留数法分解因式

二、例子

例1

y ′ = 1 , y ( 0 ) = 1 y’ = 1, \qquad y(0) = 1 y=1,y(0)=1

解:两边进行拉氏变换

s Y ( s ) − y ( 0 ) = 1 s ⇒ s Y ( s ) − 1 = 1 s ⇒ Y ( s ) = 1 s + 1 s 2 \begin{aligned} & sY(s) – y(0) = \frac{1}{s} \\ \Rightarrow &sY(s) – 1 = \frac{1}{s} \\ \Rightarrow &Y(s) = \frac{1}{s} + \frac{1}{s^2} \end{aligned} sY(s)y(0)=s1sY(s)1=s1Y(s)=s1+s21

两边进行反拉氏变换

y ( t ) = 1 + t y(t) = 1+t y(t)=1+t

这个例子简单,杀鸡用了牛刀,但很有利于熟悉公式及验证算法正确性。下面看个二阶的。

例2
y ′ ′ − y = e − t , y ( 0 ) = 1 , y ′ ( 0 ) = 0 y” – y = e^{-t}, \qquad y(0) = 1, \quad y'(0)=0 yy=et,y(0)=1,y(0)=0

解:两边进行拉氏变换

s 2 Y − s y ( 0 ) − y ′ ( 0 ) − Y = 1 1 + s ⇒ s 2 Y − s − Y = 1 s + 1 ⇒ Y = s 2 + s + 1 ( s + 1 ) 2 ( s − 1 ) = A s + 1 + B ( s + 1 ) 2 + C s − 1 \begin{aligned} & s^2Y-sy(0)-y'(0) – Y= \frac{1}{1+s} \\ \Rightarrow & s^2Y – s – Y = \frac{1}{s+1} \\ \Rightarrow & Y = \frac{s^2 +s + 1}{(s+1)^2 (s-1)} \\ &\quad = \frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{s-1} \end{aligned} s2Ysy(0)y(0)Y=1+s1s2YsY=s+11Y=(s+1)2(s1)s2+s+1=s+1A+(s+1)2B+s1C

留数法分解因式

A = lim ⁡ s → − 1 d d s ( s + 1 ) 2 s 2 + s + 1 ( s + 1 ) 2 ( s − 1 ) = lim ⁡ s → − 1 d d s s 2 + s + 1 s − 1 = lim ⁡ s → − 1 ( 2 s + 1 ) ( s − 1 ) − ( s 2 + s + 1 ) ⋅ 1 ( s − 1 ) 2 = 1 4 \begin{aligned} A &= \lim_{s\to -1}\frac{d}{ds} (s+1)^2 \frac{s^2 +s + 1}{(s+1)^2 (s-1)} \\ &= \lim_{s\to -1} \frac{d}{ds} \frac{s^2 +s + 1}{s-1} \\ &= \lim_{s\to -1} \frac{(2s + 1)(s-1) – (s^2+s+1) \cdot 1}{(s-1)^2} \\ &= \frac{1}{4} \end{aligned} A=s1limdsd(s+1)2(s+1)2(s1)s2+s+1=s1limdsds1s2+s+1=s1lim(s1)2(2s+1)(s1)(s2+s+1)1=41

B = lim ⁡ s → − 1 ( s + 1 ) 2 s 2 + s + 1 ( s + 1 ) 2 ( s − 1 ) = lim ⁡ s → − 1 s 2 + s + 1 s − 1 = − 1 2 \begin{aligned} B &= \lim_{s\to -1} (s+1)^2 \frac{s^2 +s + 1}{(s+1)^2 (s-1)} \\ &= \lim_{s\to -1} \frac{s^2 +s + 1}{s-1} \\ &= -\frac{1}{2} \end{aligned} B=s1lim(s+1)2(s+1)2(s1)s2+s+1=s1lims1s2+s+1=21

C = lim ⁡ s → 1 ( s − 1 ) s 2 + s + 1 ( s + 1 ) 2 ( s − 1 ) = lim ⁡ s → 1 s 2 + s + 1 ( s + 1 ) 2 = 3 4 \begin{aligned} C &= \lim_{s\to 1} (s-1) \frac{s^2 +s + 1}{(s+1)^2 (s-1)} \\ &= \lim_{s\to 1} \frac{s^2 +s + 1}{(s+1)^2} \\ &= \frac{3}{4} \end{aligned} C=s1lim(s1)(s+1)2(s1)s2+s+1=s1lim(s+1)2s2+s+1=43

因此

Y = 1 4 1 s + 1 − 1 2 1 ( s + 1 ) 2 + 3 4 1 s − 1 Y =\frac{1}{4} \frac{1}{s+1} – \frac{1}{2} \frac{1}{(s+1)^2} + \frac{3}{4} \frac{1}{s-1} Y=41s+1121(s+1)21+43s11

拉氏反变换得

y ( t ) = 1 4 e − t − 1 2 t e − t + 3 4 e t y(t) = \frac{1}{4} e^{-t} – \frac{1}{2} te^{-t} +\frac{3}{4} e^{t} y(t)=41et21tet+43et

中间这一项的反变换不太懂,下次再说。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/38017.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注