sklearn库

sklearn库sklearn库sklearn是scikit—learn的简称,是一个基于Python的第三方模块。sklearn库集成了一些常用的机器学习方法,在进行机器学习任务时,并不需要实现算法,只需要简单的调用sklearn库中提供的模块就能完成大多数的机器学习任务。sklearn库是在Numpy、Scipy和matplotlib的基础上开发而成的,因此在介绍sklearn的安装前,需要先安装这些依赖库。Sklearn内置数据集鸢尾花(iris)数据集#导入鸢尾花

sklearn库

sklearn 是 scikit — learn 的简称,是一个基于 Python 的第三方模块。 sklearn 库集成了一些常用的机器学习方法,在进行机器学习任务时,并不需要实现算法,只需要简单的调用 sklearn 库中提供的模块就能完成大多数的机器学习任务。
sklearn 库是在 Numpy 、 Scipy 和 matplotlib 的基础上开发而成的,因此在介绍 sklearn 的安装前,需要先安装这些依赖库。

Sklearn 内置数据集
鸢尾花(iris)数据集

#导入鸢尾花数据集
from sklearn.datasets import load_iris
iris=load_iris()

结果:
在这里插入图片描述
应用
在这里插入图片描述
在这里插入图片描述

#转为数据框
import pandas as pd
iris_df=pd.DataFrame(iris.data,columns=iris.feature_names)
iris_df

在这里插入图片描述

#return_X_y=True,直接返回pandas中的数据类型
iris_X,iris_y=load_iris(return_X_y=True)
print(type(iris_X))
type(iris_y)

波斯顿房价数据集

from sklearn import datasets
boston=datasets.load_boston()
boston

在这里插入图片描述
sklearn 基础操作
sklearn”三板斧”
1.实例化 2.fit 3.transform or predict

#实例化
from sklearn import preprocessing
std=preprocessing.StandardScaler()
std

在这里插入图片描述

数据拆分的sklearn实现
sklearn,model_selection.train_test_split()

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
boston=load_boston()
x_train,x_test,y_train,y_test=train_test_split(boston.data,boston.target,test_size=0.3,random_state=123)
len(x_train),len(x_test),len(y_train),len(y_test)

结果:
在这里插入图片描述
sklearn实现决策树
class sklearn.tree.DecisionTreeClassifier()

from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
iris=load_iris()
ct=DecisionTreeClassifier()
ct.fit(iris.data,iris.target)

在这里插入图片描述
在这里插入图片描述

from sklearn.metrics import classification_report
print(classification_report(iris.target,ct.predict(iris.data)))

在这里插入图片描述

今天的文章sklearn库分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/5361.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注