我就废话不多说了,大家还是直接看代码吧~
import numpy as np
kernel = np.array([1, 1, 1, 2]).reshape((2, 2))
print(kernel)
print(np.linalg.inv(kernel))
注意,Singular matrix奇异矩阵不可求逆
补充:python+numpy中矩阵的逆和伪逆的区别
定义:
对于矩阵A,如果存在一个矩阵B,使得AB=BA=E,其中E为与A,B同维数的单位阵,就称A为可逆矩阵(或者称A可逆),并称B是A的逆矩阵,简称逆阵。(此时的逆称为凯利逆)
矩阵A可逆的充分必要条件是|A|≠0。
伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但可以用函数pinv(A)求其伪逆矩阵。
基本语法为X=pinv(A),X=pinv(A,tol),其中tol为误差,pinv为pseudo-inverse的缩写:max(size(A))*norm(A)*eps。
今天的文章python中求矩阵的逆_矩阵的转置和矩阵的逆「建议收藏」分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/58250.html