pandas中时间序列——date_range函数

pandas中时间序列——date_range函数通过?pandas.date_range命令查看date_range函数帮助文档语法:pandas.date_range(start=None,end=None,periods=None,freq=’D’,tz=None,normalize=False,name=None,closed=None,**kwargs)该函数主要用于生成一个固定频率的时间索引,在调用构造方法时,

通过?pandas.date_range命令查看date_range函数帮助文档

语法:pandas.date_range(start=None, end=None, periods=None, freq=’D’, tz=None, normalize=False, name=None, closed=None, **kwargs)

该函数主要用于生成一个固定频率的时间索引,在调用构造方法时,必须指定start、end、periods中的两个参数值,否则报错。

主要参数说明:

periods:固定时期,取值为整数或None

freq:日期偏移量,取值为string或DateOffset,默认为’D’

normalize:若参数为True表示将start、end参数值正则化到午夜时间戳

name:生成时间索引对象的名称,取值为string或None

closed:可以理解成在closed=None情况下返回的结果中,若closed=‘left’表示在返回的结果基础上,再取左开右闭的结果,若closed=’right’表示在返回的结果基础上,再取做闭右开的结果

In [11]: import pandas as pd

In [12]: pd.date_range(start='20170101',end='20170110')
Out[12]:
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
               '2017-01-09', '2017-01-10'],
              dtype='datetime64[ns]', freq='D')

In [13]: pd.date_range(start='20170101',periods=10)
Out[13]:
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
               '2017-01-09', '2017-01-10'],
              dtype='datetime64[ns]', freq='D')

In [14]: pd.date_range(start='20170101',periods=10,freq='1D')
Out[14]:
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
               '2017-01-09', '2017-01-10'],
              dtype='datetime64[ns]', freq='D')

In [15]: pd.date_range(start='20170101',end='20170110',freq='3D',name='dt')
Out[15]: DatetimeIndex(['2017-01-01', '2017-01-04', '2017-01-07', '2017-01-10'],
 dtype='datetime64[ns]', name='dt', freq='3D')

In [16]: pd.date_range(start='2017-01-01 08:10:50',periods=10,freq='s',normaliz
    ...: e=True)
Out[16]:
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 00:00:01',
               '2017-01-01 00:00:02', '2017-01-01 00:00:03',
               '2017-01-01 00:00:04', '2017-01-01 00:00:05',
               '2017-01-01 00:00:06', '2017-01-01 00:00:07',
               '2017-01-01 00:00:08', '2017-01-01 00:00:09'],
              dtype='datetime64[ns]', freq='S')

In [17]: pd.date_range(start='2017-01-01 08:10:50',end='2017-01-02 09:20:40',fr
    ...: eq='s',normalize=True)
Out[17]:
DatetimeIndex(['2017-01-01 00:00:00', '2017-01-01 00:00:01',
               '2017-01-01 00:00:02', '2017-01-01 00:00:03',
               '2017-01-01 00:00:04', '2017-01-01 00:00:05',
               '2017-01-01 00:00:06', '2017-01-01 00:00:07',
               '2017-01-01 00:00:08', '2017-01-01 00:00:09',
               ...
               '2017-01-01 23:59:51', '2017-01-01 23:59:52',
               '2017-01-01 23:59:53', '2017-01-01 23:59:54',
               '2017-01-01 23:59:55', '2017-01-01 23:59:56',
               '2017-01-01 23:59:57', '2017-01-01 23:59:58',
               '2017-01-01 23:59:59', '2017-01-02 00:00:00'],
              dtype='datetime64[ns]', length=86401, freq='S')

In [18]: pd.date_range(start='2017-01-01 08:10:50',periods=15,freq='s',normaliz
    ...: e=False)
Out[18]:
DatetimeIndex(['2017-01-01 08:10:50', '2017-01-01 08:10:51',
               '2017-01-01 08:10:52', '2017-01-01 08:10:53',
               '2017-01-01 08:10:54', '2017-01-01 08:10:55',
               '2017-01-01 08:10:56', '2017-01-01 08:10:57',
               '2017-01-01 08:10:58', '2017-01-01 08:10:59',
               '2017-01-01 08:11:00', '2017-01-01 08:11:01',
               '2017-01-01 08:11:02', '2017-01-01 08:11:03',
               '2017-01-01 08:11:04'],
              dtype='datetime64[ns]', freq='S')

In [19]: pd.date_range(start='20170101',end='20170110',freq='3D',closed='left')
    ...:
Out[19]: DatetimeIndex(['2017-01-01', '2017-01-04', '2017-01-07'], dtype='dateti
me64[ns]', freq='3D')

In [20]: pd.date_range(start='20170101',end='20170110',freq='3D',closed='right'
    ...: )
Out[20]: DatetimeIndex(['2017-01-04', '2017-01-07', '2017-01-10'], dtype='dateti
me64[ns]', freq='3D')

今天的文章pandas中时间序列——date_range函数分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/7534.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注