最小角回归与lasso回归_spss做偏最小二乘回归「建议收藏」

最小角回归与lasso回归_spss做偏最小二乘回归「建议收藏」优缺点LARS是一个适用于高维数据的回归算法

最小角回归与lasso回归_spss做偏最小二乘回归「建议收藏」

优缺点

LARS是一个适用于高维数据的回归算法。

优点:

  • 特别适合于特征维度n 远高于样本数m的情况。

  • 算法的最坏计算复杂度和最小二乘法类似,但是其计算速度几乎和前向选择算法一样

  • 可以产生分段线性结果的完整路径,这在模型的交叉验证中极为有用

缺点:

  • 由于LARS的迭代方向是根据目标的残差而定,所以该算法对样本的噪声极为敏感。

今天的文章最小角回归与lasso回归_spss做偏最小二乘回归「建议收藏」分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/76310.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注