LM(Levenberg–Marquardt)算法原理及其python自定义实现「建议收藏」

LM(Levenberg–Marquardt)算法原理及其python自定义实现「建议收藏」LM算法原理及其python自定义实现LM(Levenberg–Marquardt)算法原理LM算法python实现实现步骤:代码:运行结果:LM(Levenberg–Marquardt)算

LM(Levenberg–Marquardt)算法原理

LM算法作为非线性优化的“标准”方法,算法的数学原理有很多优秀的参考资料。我看过这些参考资料之后,觉得再重新写一遍已经是无力且多余的事情了。我简单说明一下这些参考资料,然后贴上自己的手写笔记。
参考资料:
1.《Methods for non-linear least squares problems》这本书将非线性最小二乘问题的优化方法讲了一大通,非常值得一看。因为LM算法是从Gauss-Newton方法演进来的,而Gauss-Newton方法又是从Newton方法演进过来的,所以追根溯源应该从Newton法开始看起。而比Newton法更简洁的就是最速下降法了,这本书将所有的非线性优化问题讲了个底朝天,聪明人仔细读一读不吃亏。
2.A Brief Description of the Levenberg-Marquardt Algorithm Implemened by levmar
如果说上面那本书是准备好给搞理论看的版本的话,那这篇文章一定就是准备好给工程师看的了,文章对LM算法的实现给出了很好的讲解,工程师读一下,醍醐灌顶就可以写代码了。
3.[blog]原理及C++实现:Levenberg–Marquardt算法学习
4.[blog]原理及matlab实现:Levenberg-Marquardt
5.[blog]另一篇python实现:Python 算例实现Levenberg-Marquardt算法
6.我的笔记,你可以放心略过的部分:)D
在这里插入图片描述在这里插入图片描述在这里插入图片描述

LM算法python实现

实现步骤:

在LM算法原理中提到的参考资料提供了一些算法实现的伪代码,但是他们略有不同,主要的不同点是在公式表述以及u、v的更新比率上有小的差异。
我运行过他们的部分代码,发现优化效果也能够快速收敛,并不影响实际效果。
我按照文章A Brief Description of the Levenberg-Marquardt Algorithm Implemened by levmar中的步骤,重新写了python代码,代码实现步骤如下:
在这里插入图片描述

代码:

1.我随机产生了100个input_data,设定正确的参数a和b,然后按照我要拟合的公式a×np.exp(b×input_data)加上一些高斯噪声计算出了100个对应的output_data, 作为观察。
2.初始化参数a和b,使之不要与真实值太离谱
3.用LM算法对其优化拟合,画出拟合曲线和迭代误差曲线。

'''
#Implement LM algorithm only using basic python
#Author:Leo Ma
#For csmath2019 assignment4,ZheJiang University
#Date:2019.04.28
'''
import numpy as np
import matplotlib.pyplot as plt 

#input data, whose shape is (num_data,1)
#data_input=np.array([[0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8]]).T
#data_output=np.array([[19.21, 18.15, 15.36, 14.10, 12.89, 9.32, 7.45, 5.24, 3.01]]).T


tao = 10**-3
threshold_stop = 10**-15
threshold_step = 10**-15
threshold_residual = 10**-15
residual_memory = []



#construct a user function
def my_Func(params,input_data):
    a = params[0,0]
    b = params[1,0]
    #c = params[2,0]
    #d = params[3,0]
    return a*np.exp(b*input_data)
    #return a*np.sin(b*input_data[:,0])+c*np.cos(d*input_data[:,1])


    
#generating the input_data and output_data,whose shape both is (num_data,1)
def generate_data(params,num_data):
    x = np.array(np.linspace(0,10,num_data)).reshape(num_data,1)       # 产生包含噪声的数据
    mid,sigma = 0,5
    y = my_Func(params,x) + np.random.normal(mid, sigma, num_data).reshape(num_data,1)
    return x,y
    

#calculating the derive of pointed parameter,whose shape is (num_data,1)
def cal_deriv(params,input_data,param_index):
    params1 = params.copy()
    params2 = params.copy()
    params1[param_index,0] += 0.000001
    params2[param_index,0] -= 0.000001
    data_est_output1 = my_Func(params1,input_data)
    data_est_output2 = my_Func(params2,input_data)
    return (data_est_output1 - data_est_output2) / 0.000002

#calculating jacobian matrix,whose shape is (num_data,num_params)
def cal_Jacobian(params,input_data):
    num_params = np.shape(params)[0]
    num_data = np.shape(input_data)[0]
    J = np.zeros((num_data,num_params))
    for i in range(0,num_params):
            J[:,i] = list(cal_deriv(params,input_data,i))
    return J

#calculating residual, whose shape is (num_data,1)
def cal_residual(params,input_data,output_data):
    data_est_output = my_Func(params,input_data)
    residual = output_data - data_est_output
    return residual
    

'''    
#calculating Hessian matrix, whose shape is (num_params,num_params)
def cal_Hessian_LM(Jacobian,u,num_params):
    H = Jacobian.T.dot(Jacobian) + u*np.eye(num_params)
    return H
    
#calculating g, whose shape is (num_params,1)
def cal_g(Jacobian,residual):
    g = Jacobian.T.dot(residual)
    return g

#calculating s,whose shape is (num_params,1)
def cal_step(Hessian_LM,g):
    s = Hessian_LM.I.dot(g)
    return s
     
'''


#get the init u, using equation u=tao*max(Aii)
def get_init_u(A,tao):
    m = np.shape(A)[0]
    Aii = []
    for i in range(0,m):
        Aii.append(A[i,i])
    u = tao*max(Aii)
    return u
    
#LM algorithm
def LM(num_iter,params,input_data,output_data):
    num_params = np.shape(params)[0]#the number of params
    k = 0#set the init iter count is 0
    #calculating the init residual
    residual = cal_residual(params,input_data,output_data)
    #calculating the init Jocobian matrix
    Jacobian = cal_Jacobian(params,input_data)
    
    A = Jacobian.T.dot(Jacobian)#calculating the init A
    g = Jacobian.T.dot(residual)#calculating the init gradient g
    stop = (np.linalg.norm(g, ord=np.inf) <= threshold_stop)#set the init stop
    u = get_init_u(A,tao)#set the init u
    v = 2#set the init v=2
    
    while((not stop) and (k<num_iter)):
        k+=1
        while(1):
            Hessian_LM = A + u*np.eye(num_params)#calculating Hessian matrix in LM
            step = np.linalg.inv(Hessian_LM).dot(g)#calculating the update step
            if(np.linalg.norm(step) <= threshold_step):
                stop = True
            else:
                new_params = params + step#update params using step
                new_residual = cal_residual(new_params,input_data,output_data)#get new residual using new params
                rou = (np.linalg.norm(residual)**2 - np.linalg.norm(new_residual)**2) / (step.T.dot(u*step+g))
                if rou > 0:
                    params = new_params
                    residual = new_residual
                    residual_memory.append(np.linalg.norm(residual)**2)
                    #print (np.linalg.norm(new_residual)**2)
                    Jacobian = cal_Jacobian(params,input_data)#recalculating Jacobian matrix with new params
                    A = Jacobian.T.dot(Jacobian)#recalculating A
                    g = Jacobian.T.dot(residual)#recalculating gradient g
                    stop = (np.linalg.norm(g, ord=np.inf) <= threshold_stop) or (np.linalg.norm(residual)**2 <= threshold_residual)
                    u = u*max(1/3,1-(2*rou-1)**3)
                    v = 2
                else:
                    u = u*v
                    v = 2*v
            if(rou > 0 or stop):
                break;
        
    return params
  


        
        
def main():
    #set the true params for generate_data() function
    params = np.zeros((2,1))
    params[0,0]=10.0
    params[1,0]=0.8
    num_data = 100# set the data number
    data_input,data_output = generate_data(params,num_data)#generate data as requested
    
    #set the init params for LM algorithm 
    params[0,0]=6.0
    params[1,0]=0.3

    #using LM algorithm estimate params
    num_iter=100    # the number of iteration
    est_params = LM(num_iter,params,data_input,data_output)
    print(est_params)
    a_est=est_params[0,0]
    b_est=est_params[1,0]


    #老子画个图看看状况
    plt.scatter(data_input, data_output, color='b')
    x = np.arange(0, 100) * 0.1 #生成0-10的共100个数据,然后设置间距为0.1
    plt.plot(x,a_est*np.exp(b_est*x),'r',lw=1.0)
    plt.xlabel("2018.06.13")
    plt.savefig("result_LM.png")
    plt.show()
    
    plt.plot(residual_memory)
    plt.xlabel("2018.06.13")
    plt.savefig("error-iter.png")
    plt.show()

if __name__ == '__main__':
    main()

运行结果:

在这里插入图片描述在这里插入图片描述

今天的文章LM(Levenberg–Marquardt)算法原理及其python自定义实现「建议收藏」分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/79479.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注