深度学习/机器学习入门基础数学知识整理(七):数学上sup、inf含义,和max、min的区别「建议收藏」

深度学习/机器学习入门基础数学知识整理(七):数学上sup、inf含义,和max、min的区别「建议收藏」经常在文献中看到inf和sup,很多人不知道是什么意思

inf和sup的定义

经常在文献中看到inf和sup,很多人不知道是什么意思。其实这两个概念是来自于“数学分析”中的上确界和下确界:

  • inf: infimum 或 infima,中文叫下确界或最大下界。 inf(S), S表示一个集合, inf(S)是指集合S的下确界, 即小于或等于S中所有元素的最大值, 这个数不一定在集合S中。
  • sup:supremum,中文叫上确界。sup(S)是指集合S的上确界,即大于或等于S的所有元素的最小值, 这个数不一定在集合S中。

下面给出一些集合上的简单例子[1]:

inf例子:

  1. i n f { 1 , 2 , 3 } = 1 inf\{1,2,3\} = 1 inf{
    1,2,3}=
    1
    ;
  2. i n f { x ∈ R , 0 < x < 1 } = 0 inf\{x \in \mathbb{R}, 0<x<1 \} = 0 inf{
    x
    R,0<x<1}=0
    ;
  3. i n f { ( − 1 ) n + 1 / n : n = 1 , 2 , 3 , . . . } = − 1 inf\{(-1)^{n} + 1/n : n = 1, 2, 3,…\} = -1 inf{
    (1)n+
    1/n:n=1,2,3,...}=1
    ;

如果一个集合有最小元素, 则下确界等于这个最小元素,下确界属于这个集合,如例子1;反之,则下确界不属于这个集合,这一点从例子2,3,中可以看出。

sup例子:

  1. s u p { 1 , 2 , 3 } = 3 sup\{1,2,3\} = 3 sup{
    1,2,3}=
    3
    ;
  2. s u p { x ∈ R , 0 < x < 1 } = s u p { x ∈ R , 0 ≤ x ≤ 1 } = 1 sup\{x \in \mathbb{R}, 0<x<1 \} = sup\{x \in \mathbb{R}, 0\leq x\leq1 \} = 1 sup{
    x
    R,0<x<1}=sup{
    x
    R,0x1}=1
    ;
  3. s u p { ( − 1 ) n − 1 / n : n = 1 , 2 , 3 , . . . } = 1 sup\{(-1)^{n} – 1/n : n = 1, 2, 3,…\} = 1 sup{
    (1)n
    1/n:n=1,2,3,...}=1
    ;

如果一个集合有最大元素, 则上确界等于这个最大元素,上确界属于这个集合,如例子1;反之,则上确界不属于这个集合,这一点从例子2,3 中可以看出。

inf和sup的性质、证明

简单性质:

  • s u p { a + b : a ∈ A   a n d   b ∈ B } = s u p ( A ) + s u p ( B ) sup\{a+b:a\in A\ and\ b \in B\} = sup(A)+sup(B) sup{
    a+
    b:aA and bB}=sup(A)+sup(B)
    ;
  • i n f { a + b : a ∈ A   a n d   b ∈ B } = i n f ( A ) + i n f ( B ) inf\{a+b:a\in A\ and\ b \in B\} = inf(A)+inf(B) inf{
    a+
    b:aA and bB}=inf(A)+inf(B)
    ;

证明:令A+B={a+b|a∈A,b∈B},求证:sup(A+B)=supA + supB

首先证明supA+supB是集合A+B的一个上界,再证明其是一个最小的上界:在这里插入图片描述
另外上述性质对减法、乘法、除法是不成立的。很容找到反例,例如A={-1,1},B={-5,1},那么sup(A*B)=5,而supA=1、supB=1,乘法是不成立的。减法和除法也类似,很容易找到反例。

sup, inf和max, min的区别

集合是比较简单容易理解的,但是实际中用的比较多是表示一个函数上下确界,写成 s u p f ( x ) sup f(x) supf(x) i n f f ( x ) inf f(x) inff(x)。使用 inf 或 sup 总能保证一个函数的 inf 或 sup 存在,而函数的 min 或 max 有时候不存在。例如
f ( x ) = s i n ( x ) / x f(x)=sin(x)/x f(x)=sin(x)/x该函数在 x=0 处没有值,因此其最大值即 max 不存在,但是我们可以看出 f(x) 最小的上界为 1,即 s u p f ( x ) = 1 sup f(x)=1 supf(x)=1
在这里插入图片描述

参考资料

[1] https://blog.csdn.net/D_turtle/article/details/81901853
[2] https://www.zybang.com/question/6adc7986ab84c9d94fdc00ccfdc1f7db.html
[3] https://blog.csdn.net/robert_chen1988/article/details/81233738

今天的文章深度学习/机器学习入门基础数学知识整理(七):数学上sup、inf含义,和max、min的区别「建议收藏」分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/82949.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注