能被7整除的数的特征
若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果数字仍然太大不能直接观察出来,就重复此过程。
能被11整除的数的特征
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
—→奇位数字的和9+6+8=23
—→偶位数位的和4+1+7=12
23-12=11
因此,491678能被11整除。
这种方法叫“奇偶位差法”。
能被13整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果数字仍然太大不能直接观察出来,就重复此过程。
如:判断1284322能不能被13整除。
128432+2
×
4=128440
12844+0×4=12844
1284+4×4=1300
1300÷13=100
所以,1284322能被13整除。
能被17整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断1675282能不能被17整除。
167528-2×5=167518
16751-8×5=16711
1671-1×5=1666
166-6×5=136
到这里如果你仍然观察不出来,就继续
……
6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30-13=17,17÷17=1;所以1675282能被17整除。
能被19整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果数字仍然太大不能直接观察出来,就重复此过程。
今天的文章能被7,11,13整除的数的特征的原理_三位截断法7 11 13分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/88023.html