学习笔记—四元数与欧拉角之间的转换

学习笔记—四元数与欧拉角之间的转换学习笔记—四元数与欧拉角之间的转换在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点

学习笔记—四元数与欧拉角之间的转换

    在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系: 

学习笔记—四元数与欧拉角之间的转换

图1 3D Cartesian coordinate System (from wikipedia) 

    定义学习笔记—四元数与欧拉角之间的转换分别为绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll。 

学习笔记—四元数与欧拉角之间的转换

图2 Tait-Bryan angles (from wikipedia) 

一、四元数的定义 

学习笔记—四元数与欧拉角之间的转换

   通过旋转轴和绕该轴旋转的角度可以构造一个四元数: 

学习笔记—四元数与欧拉角之间的转换

       其中学习笔记—四元数与欧拉角之间的转换是绕旋转轴旋转的角度,学习笔记—四元数与欧拉角之间的转换为旋转轴在x,y,z方向的分量(由此确定了旋转轴)。 

二、欧拉角到四元数的转换 

学习笔记—四元数与欧拉角之间的转换

三、四元数到欧拉角的转换 

学习笔记—四元数与欧拉角之间的转换

       arctanarcsin的结果是学习笔记—四元数与欧拉角之间的转换,这并不能覆盖所有朝向(对于学习笔记—四元数与欧拉角之间的转换学习笔记—四元数与欧拉角之间的转换的取值范围已经满足),因此需要用atan2来代替arctan。 

学习笔记—四元数与欧拉角之间的转换

四、在其他坐标系下使用 

在其他坐标系下,需根据坐标轴的定义,调整一下以上公式。如在Direct3D中,笛卡尔坐标系的X轴变为Z轴,Y轴变为X轴,Z轴变为Y轴(无需考虑方向)。 

学习笔记—四元数与欧拉角之间的转换

五、示例代码 

 http://www.cppblog.com/Files/heath/Euler2Quaternion.rar
Demo渲染两个模型,左边使用欧拉角,右边使用四元数,方向键Up、Left、Right旋转模型。

参考文献: 
[1] http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles 
[2] Ken Shoemake, Animating Rotation with Quaternion Curves, 1985

posted on 2009-12-13 18:44 Heath 阅读(16620) 评论(2)  编辑 收藏 引用 所属分类: Graphics Programming

今天的文章
学习笔记—四元数与欧拉角之间的转换分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/89713.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注