20款优秀的数据可视化工具 (建议收藏)_数据可视化 csdn

20款优秀的数据可视化工具 (建议收藏)_数据可视化 csdn近年来 在线地图的市场成熟了很多 如果你需要在数据可视化项目中植入定制化的地图方案 目前市场上已经有很多选择 但是知道在何时选择何种地图方案则成了一个很关键的业务决策

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip (备注网络安全)
img

正文

虽然D3能够提供非常花哨的互动图表,但你在选择数据可视化工具时,需要牢记的一点是:知道在何时保持简洁。

07 Visual.ly

图片

如果你需要制作信息图而不仅仅是数据可视化,目前也有大把的工具可用。

Visual.ly就是最流行的一个选择。虽然Visual.ly的主要定位是:“信息图设计师的在线集市”,但是也提供了大量信息图模板。虽然功能还有很多限制,但是Visual.ly绝对是个能激发你灵感的地方。

互动图形用户界面(GUI)控制

如果数据可视化的互动性强大到可以作为GUI界面会怎样?

随着在线数据可视化的发展,按钮、下拉列表和滑块都在进化成更加复杂的界面素,例如能够调整数据范围的互动图形素,推拉这些图形素时输入参数和输出结果数据会同步改变。

在这种情况下,图形控制和内容已经合为一体。以下这些工具能够帮你实现这些功能:

08 Crossfilter

图片

当我们为方便客户浏览数据开发出更加复杂的工具时,我们已经能够创建出既是图表,又是互动图形用户界面的小程序。JavaScript库Crossfilter就是这样的工具。

Crossfilter应用:当你调整一个图表中的输入范围时,其他关联图表的数据也会随之改变。

09 Tangle

图片

JavaScript库Tangle进一步模糊了内容与控制之间的界限。

在上图的应用实例中,Tangle生成了一个负载的互动方程,读者可以调整输入值获得相应数据。

地图工具

地图生成是web上最困难的任务之一。Google Maps的出现完全颠覆了过去人们对在线地图功能的认识。而Google发布的Maps API则让所有的开发者都能在自己的网站中植入地图功能。

近年来,在线地图的市场成熟了很多,如果你需要在数据可视化项目中植入定制化的地图方案,目前市场上已经有很多选择,但是知道在何时选择何种地图方案则成了一个很关键的业务决策。

地图方案看上去功能都很强大,但是切忌:“有了一把锤子,看什么都像钉子”

10 Modest Maps

图片

顾名思义,Modest Maps是一个很小的地图库,只有10KB大小,是目前最小的可用地图库。

这似乎意味着Modest Maps只提供一些基本的地图功能,但是不要被这一点迷惑了。在一些扩展库的配合下,例如Wax,Modest Maps立刻会变成一个强大的地图工具。

11 Leaflet

图片

CloudMade团队为大家带来了Leaflet,这是另外一个小型化的地图框架,通过小型化和轻量化来满足移动网页的需要。

Leaflet和Modest Maps都是开源项目,有强大的社区支持,是在网站中整合地图应用的理想选择。

12 PolyMaps

图片

Polymaps是另外一个地图库,但主要面向数据可视化用户。

Polymaps在地图风格化方面有独到之处,类似CSS样式表的选择器,是不可错过的好东西。

13 OpenLayers

图片

OpenLayers可能是所有地图库中可靠性最高的个。

虽然文档注释并不完善,且学习曲线非常陡峭,但是对于一些特定的任务来说,OpenLayers无可匹敌。例如能够提供一些其他地图库都没有的特殊工具。

14 Kartograph

图片

Kartograph的标记线是对地图绘制的重新思考,我们都已经习惯了莫卡托投影,但是Kartograph为我们带来了更多的选择。

如果你不需要调用全球数据,而仅仅是生成某一区域的地图,那么Kartogaph将使你脱颖而出。

15 CartoDB

图片

CartoDB是一个不可错过的网站。你可以用CartoDB很轻易就把表格数据和地图关联起来,这方面CartoDB是最优秀的选择。

例如,你可以输入CSV通讯地址文件,CartDB能将地址字符串自动转化成经度/维度数据并在地图上标记出来。目前CartoDB支持免费生成五张地图数据表,更多使用需要支付月费。

图片

随着高清移动设备的普及,web开发的一个最新趋势是将符号字体与字体整合(把符号变成字体),创建出漂亮的矢量化图标。

在这些新型字体中,例如FF Chartwell和Chartjunk是专门用来显示图表和图形的。

他们与OpenType碰到的问题一样,就是不能被所有的浏览器支持,但是不久的未来这些矢量字体将是数据可视化工作中需要考虑到的因素。

进阶工具

如果你准备用数据可视化做一些“严肃”的工作,那么你可能不会对在线可视化工具或者web小程序有太大兴趣,你需要的是桌面应用和编程环境。

16 Processing

图片

Processing是数据可视化的招牌工具。你只需要编写一些简单的代码,然后编译成Java。

目前还有一个Processing.js项目,可以让网站在没有Java Applets的情况下更容易地使用Processing。

由于端口支持Objective-C,你也可以在iOS上使用Processing。

虽然Processing是一个桌面应用,但也可以在几乎所有平台上运行,此外经过数年发展,Processing社区目前已经拥有大量实例和代码。

17 NodeBox

图片

NodeBox是OS X上创建二维图形和可视化的应用程序。

你需要了解Python程序,NodeBox与Processing类似,但是没有Processing的互动功能。

专家级工具

与Excel相对的是专业数据分析工具。如果你是一个专业的数据分析师,那么你就必须对下面将要介绍的工具有所了解(如果不是精通的话)。

众所周知,SPSS和SAS是数据分析行业的标准工具,但是这些工具的费用不菲,只有大型组织和学术机构才有机会使用。

下面我们介绍几种免费的替代工具,这些开源工具的共同特征是都有强大的社区支持。开源分析工具性能不输老牌专业工具,插件的支持甚至更好。

18 R

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip (备注网络安全)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip (备注网络安全)
[外链图片转存中…(img-CfpieGxR-48)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

今天的文章 20款优秀的数据可视化工具 (建议收藏)_数据可视化 csdn分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2024-12-08 11:40
下一篇 2024-12-08 11:33

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/81031.html