开根号的笔算算法图解_开平方的 7 种算法

开根号的笔算算法图解_开平方的 7 种算法本文详细介绍了计算平方根的 7 种方法 包括古人算法 牛顿迭代法 暴力 牛顿综合法 二分开方法等

作者:nash_
链接:https://blog.csdn.net/zmazon/article/details/ sqrt()函数,是绝大部分语言支持的常用函数,它实现的是开方运算;开方运算最早是在我国魏晋时数学家刘徽所著的《九章算术》被提及。今天写了几个函数加上国外大神的几个神级程序带大家领略sqrt的神奇之处。

1、古人算法(暴力法)

原理:从0开始0.00001,000002...一个一个试,直到找到x的平方根,代码如下:
public class APIsqrt { 
      static double baoliSqrt(double x) { 
      final double _JINGDU = 1e-6; double i; for (i = 0; Math.abs(x - i * i) > _JINGDU; i += _JINGDU) ; return i; } public static void main(String[] args) { 
      double x = 3; double root = baoliSqrt(x); System.out.println(root); }
测试结果: 1、76947

2、牛顿迭代法

计算机科班出身的童鞋可能首先会想到的是《数值分析》中的牛顿迭代法求平方根。原理是:随意选一个数比如说8,要求根号3,我们可以这么算:

(8 + 3/8) = 4.1875

(4.1875 + 3/4.1875) = 2.4519

(2.4519 + 3/2.4519) = 1.837

(1.837 + 3/1.837) = 1.735 做了4步基本算出了近似值了,这种迭代的方式就是传说中的牛顿迭代法了,代码如下:
public class APIsqrt { 
      static double newtonSqrt(double x) { 
      if (x < 0) { 
      System.out.println("负数没事开什么方"); return -1; } if (x == 0) return 0; double _avg = x; double last_avg = Double.MAX_VALUE; final double _JINGDU = 1e-6; while (Math.abs(_avg - last_avg) > _JINGDU) { 
      last_avg = _avg; _avg = (_avg + x / _avg) / 2; } return _avg; } public static void main(String[] args) { 
      double x = 3; double root = newtonSqrt(x); System.out.println(root); }}
测试结果:

3、暴力-牛顿综合法

原理:还是以根号3为例,先用暴力法讲根号3逼近到1.7,然后再利用上述的牛顿迭代法。虽然没有用牛顿迭代好,但是也为我们提供一种思路。代码如下:
public class APIsqrt { 
      static double baoliAndNewTonSqrt(double x) { 
      if (x < 0) { 
      System.out.println("负数没事开什么方"); return -1; } if (x == 0) return 0; double i = 0; double _avg; double last_avg = Double.MAX_VALUE; for (i = 0; i*i < x; i += 0.1); _avg = i; final double _JINGDU = 1e-6; while (Math.abs(_avg - last_avg) > _JINGDU) { 
      last_avg = _avg; _avg = (_avg + x / _avg) / 2; } return _avg; } public static void main(String[] args) { 
      double x = 3; double root = baoliAndNewTonSqrt(x); System.out.println(root); }}
测试结果: 1、89423

4、二分开方法

原理:还是以3举例:

(0+3)/2 = 1.5, 1.5^2 = 2.25, 2.25 < 3;

(1.5+3)/2 = 2.25, 2.25^2 = 5.0625, 5.0625 > 3;

(1.5+2.25)/2 = 1.875, 1.875^2 = 3.; 3.>3; 直到前后两次平均值只差小于自定义精度为止,代码如下:
public class APIsqrt { 
      static double erfenSqrt(double x) { 
      if (x < 0) { 
      System.out.println("负数没事开什么方"); return -1; } if (x == 0) return 0; final double _JINGDU = 1e-6; double _low = 0; double _high = x; double _mid = Double.MAX_VALUE; double last_mid = Double.MIN_VALUE; while (Math.abs(_mid - last_mid) > _JINGDU) { 
      last_mid = _mid; _mid = (_low + _high) / 2; if (_mid * _mid > x) _high = _mid; if (_mid * _mid < x) _low = _mid; } return _mid; } public static void main(String[] args) { 
      double x = 3; double root = erfenSqrt(x); System.out.println(root); }}
测试结果: 1、9497

5、计算 (int)(sqrt(x))算法

PS:此算法非博主所写 原理:空间换时间,细节请大家自行探究,代码如下:
public class APIsqrt2 { 
      final static int[] table = { 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255 }; / * A faster replacement for (int)(java.lang.Math.sqrt(x)). Completely * accurate for x < (i.e. 2^31)... */ static int sqrt(int x) { 
      int xn; if (x >= 0x10000) { 
      if (x >= 0x) { 
      if (x >= 0x) { 
      if (x >= 0x) { 
      xn = table[x >> 24] << 8; } else { 
      xn = table[x >> 22] << 7; } } else { 
      if (x >= 0x) { 
      xn = table[x >> 20] << 6; } else { 
      xn = table[x >> 18] << 5; } } xn = (xn + 1 + (x / xn)) >> 1; xn = (xn + 1 + (x / xn)) >> 1; return ((xn * xn) > x) ? --xn : xn; } else { 
      if (x >= 0x) { 
      if (x >= 0x) { 
      xn = table[x >> 16] << 4; } else { 
      xn = table[x >> 14] << 3; } } else { 
      if (x >= 0x40000) { 
      xn = table[x >> 12] << 2; } else { 
      xn = table[x >> 10] << 1; } } xn = (xn + 1 + (x / xn)) >> 1; return ((xn * xn) > x) ? --xn : xn; } } else { 
      if (x >= 0x100) { 
      if (x >= 0x1000) { 
      if (x >= 0x4000) { 
      xn = (table[x >> 8]) + 1; } else { 
      xn = (table[x >> 6] >> 1) + 1; } } else { 
      if (x >= 0x400) { 
      xn = (table[x >> 4] >> 2) + 1; } else { 
      xn = (table[x >> 2] >> 3) + 1; } } return ((xn * xn) > x) ? --xn : xn; } else { 
      if (x >= 0) { 
      return table[x] >> 4; } } } return -1; } public static void main(String[] args){ 
      System.out.println(sqrt(65)); }}
测试结果:8

6、最快的sqrt算法

PS:此算法非博主所写 这个算法很有名,大家可能也见过,作者是开发游戏的,图形算法中经常用到sqrt,作者才写了一个神级算法,和他那神秘的0x5f3759df,代码如下
#include float InvSqrt(float x){ 
      float xhalf = 0.5f*x; int i = *(int*)&x; // get bits for floating VALUE i = 0x5f375a86- (i>>1); // gives initial guess y0 x = *(float*)&i; // convert bits BACK to float x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy return x;}int main(){ 
      printf("%lf",1/InvSqrt(3)); return 0;}
测试结果: f8176af243a7868a2c6a580ecb4decf5.png 感兴趣的朋友可以参考 http://wenku.baidu.com/view/a0174fa20029bd64783e2cc0.html   是作者解释这个算法的14页论文《Fast Inverse Square Root》

7、一个与算法6相似的算法

PS:此算法非博主所写 代码如下:
#include float SquareRootFloat(float number) { 
      long i; float x, y; const float f = 1.5F; x = number * 0.5F; y = number; i = * ( long * ) &y; i = 0x5f3759df - ( i >> 1 ); y = * ( float * ) &i; y = y * ( f - ( x * y * y ) ); y = y * ( f - ( x * y * y ) ); return number * y;}int main(){ 
      printf("%f",SquareRootFloat(3)); return 0;}
测试结果: 751cdd8a91ff256e2261ba9e9f352e41.png

-END-

34f565bbd496772c913722947084952c.png

今天的文章 开根号的笔算算法图解_开平方的 7 种算法分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2024-12-21 22:51
下一篇 2024-12-21 22:46

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/92248.html