1 简介
较传统遥感图像而言,多光谱遥感图像能够获取更多的光谱信息,从而为识别边界和地物创造更加良好的条件,因此具有更高的研究意义和应用价值。随着地理信息系统技术中多光谱图像在空间分辨率上的高速提升,针对多光谱图像的处理及应用也逐渐增加。然而,在多光谱图像的采集过程中不可避免地会引入噪声,影响图像的清晰度,从而给后续的图像处理和分析工作带来困难。基于自适应布谷鸟算法优化维纳滤波器实现多光谱图像去噪附matlab代码。
2 部分代码
%% 2DACS- Wiener filtering
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Multispectral Satellite Image Denoising via Adaptive Cuckoo Search-Based Wiener Filter
%Shilpa Suresh, Shyam Lal, Chen Chen, Turgay Celik
%Published in: IEEE Transactions on Geoscience and Remote Sensing ( Volume: 56 , Issue: 8 , Aug. 2018 )
%DOI: 10.1109/TGRS.2018.2815281
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;
clear all;
close all
I = im2double(imread('1.jpg'));
r = I(:,:,1);
g = I(:,:,2);
b = I(:,:,3);
sizeorig=size(I);
rr = imresize(r,1);
gr = imresize(g,1);
br = imresize(b,1);
Im(:,:,1) = rr;
Im(:,:,2) = gr;
Im(:,:,3) = br;
nvar = 0.01; %variance of noise
ngrays = imnoise(Im,'gaussian',0,nvar); %white gaussian noise
%% Denoised image
y=adaptivecucko(Im,ngrays,50);
figure;subplot(131);imshow(Im);title('原图')
subplot(132);imshow(ngrays);title('加噪图')
subplot(133);imshow(y);title('去噪图')
3 仿真结果
4 参考文献
[1]颜冰等. “一种多光谱图像的去噪和滤波方法及装置.”, CN110298805A. 2019.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
今天的文章【图像去噪】基于自适应布谷鸟算法优化维纳滤波器实现多光谱图像去噪附matlab代码分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/11421.html