前言:为什么有人说 Python 的多线程是鸡肋,不是真正意义上的多线程?
看到这里,也许你会疑惑。这很正常,所以让我们带着问题来阅读本文章吧。问题:
1、Python多线程为什么耗时更长?
2、为什么在Python里面推荐使用多进程而不是多线程?
1 基础知识
现在的PC都是多核的,使用多线程能充分利用CPU来提供程序的执行效率。
1.1 线程
线程是一个基本的CPU执行单元。它必须依托于进程存活。一个线程是一个execution context(执行上下文),即一个CPU执行时所需要的一串指令。
1.2 进程
进程是指一个程序在给定数据集合上的一次执行过程,是系统进行资源分配和运行调用的独立单位。可以简单地理解为操作系统中正在执行的程序。也就说,每个应用程序都有一个自己的进程。
每一个进程启动时都会最先产生一个线程,即主线程。然后主线程会再创建其他的子线程。
1.3 两者的区别
- 线程必须在某个进程中执行。
- 一个进程可包含多个线程,其中有且只有一个主线程。
- 多线程共享同个地址空间、打开的文件以及其他资源。
- 多进程共享物理内存、磁盘、打印机以及其他资源。
1.4 线程的类型
线程的因作用可以划分为不同的类型。大致可分为:
- 主线程
- 子线程
- 守护线程(后台线程)
- 前台线程
2 Python 多线程
2.1 GIL
其他语言,CPU是多核时是支持多个线程同时执行。但在Python中,无论是单核还是多核,同时只能由一个线程在执行。其根源是GIL的存在。GIL的全称是Global Interpreter Lock(全局解释器锁),来源是Python设计之初的考虑,为了数据安全所做的决定。某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个Python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。
而目前Python的解释器有多种,例如:
-
CPython:CPython是用C语言实现的Python解释器。 作为官方实现,它是最广泛使用的Python解释器。
-
PyPy:PyPy是用RPython实现的解释器。RPython是Python的子集, 具有静态类型。这个解释器的特点是即时编译,支持多重后端(C, CLI, JVM)。PyPy旨在提高性能,同时保持最大兼容性(参考CPython的实现)。
-
Jython:Jython是一个将Python代码编译成Java字节码的实现,运行在JVM (Java Virtual Machine) 上。另外,它可以像是用Python模块一样,导入并使用任何Java类。
-
IronPython:IronPython是一个针对 .NET 框架的Python实现。它可以用Python和 .NET framework的库,也能将Python代码暴露给 .NET框架中的其他语言。
GIL只在CPython中才有,而在PyPy和Jython中是没有GIL的。
每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。这就导致打印线程执行时长,会发现耗时更长的原因。
并且由于GIL锁存在,Python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,Python 的多线程效率并不高的根本原因。
2.2 创建多线程
Python提供两个模块进行多线程的操作,分别是thread
和threading
,前者是比较低级的模块,用于更底层的操作,一般应用级别的开发不常用。
- 方法1:直接使用
threading.Thread()
import threading
# 这个函数名可随便定义
def run(n):
print("current task:", n)
if __name__ == "__main__":
t1 = threading.Thread(target=run, args=("thread 1",))
t2 = threading.Thread(target=run, args=("thread 2",))
t1.start()
t2.start()
- 方法2:继承
threading.Thread
来自定义线程类,重写run
方法
import threading
class MyThread(threading.Thread):
def __init__(self, n):
super(MyThread, self).__init__() # 重构run函数必须要写
self.n = n
def run(self):
print("current task:", n)
if __name__ == "__main__":
t1 = MyThread("thread 1")
t2 = MyThread("thread 2")
t1.start()
t2.start()
2.3 线程合并
join
函数执行顺序是逐个执行每个线程,执行完毕后继续往下执行。主线程结束后,子线程还在运行,join
函数使得主线程等到子线程结束时才退出。
import threading
def count(n):
while n > 0:
n -= 1
if __name__ == "__main__":
t1 = threading.Thread(target=count, args=("100000",))
t2 = threading.Thread(target=count, args=("100000",))
t1.start()
t2.start()
# 将 t1 和 t2 加入到主线程中
t1.join()
t2.join()
2.4 线程同步与互斥锁
线程之间数据共享的。当多个线程对某一个共享数据进行操作时,就需要考虑到线程安全问题。threading
模块中定义了Lock 类,提供了互斥锁的功能来保证多线程情况下数据的正确性。
用法的基本步骤:
#创建锁
mutex = threading.Lock()
#锁定
mutex.acquire([timeout])
#释放
mutex.release()
其中,锁定方法acquire可以有一个超时时间的可选参数timeout。如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理。具体用法见示例代码:
import threading
import time
num = 0
mutex = threading.Lock()
class MyThread(threading.Thread):
def run(self):
global num
time.sleep(1)
if mutex.acquire(1):
num = num + 1
msg = self.name + ': num value is ' + str(num)
print(msg)
mutex.release()
if __name__ == '__main__':
for i in range(5):
t = MyThread()
t.start()
2.5 可重入锁(递归锁)
为了满足在同一线程中多次请求同一资源的需求,Python提供了可重入锁(RLock)。RLock
内部维护着一个Lock
和一个counter
变量,counter记录了acquire 的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。具体用法如下:
#创建 RLock
mutex = threading.RLock()
class MyThread(threading.Thread):
def run(self):
if mutex.acquire(1):
print("thread " + self.name + " get mutex")
time.sleep(1)
mutex.acquire()
mutex.release()
mutex.release()
2.6 守护线程
如果希望主线程执行完毕之后,不管子线程是否执行完毕都随着主线程一起结束。我们可以使用setDaemon(bool)
函数,它跟join
函数是相反的。它的作用是设置子线程是否随主线程一起结束,必须在start()
之前调用,默认为False
。
2.7 定时器
如果需要规定函数在多少秒后执行某个操作,需要用到Timer
类。具体用法如下:
from threading import Timer
def show():
print("Pyhton")
# 指定一秒钟之后执行 show 函数
t = Timer(1, hello)
t.start()
3 Python 多进程
3.1 创建多进程
Python要进行多进程操作,需要用到muiltprocessing
库,其中的Process
类跟threading
模块的Thread
类很相似。所以直接看代码熟悉多进程。
- 方法1:直接使用
Process
, 代码如下:
from multiprocessing import Process
def show(name):
print("Process name is " + name)
if __name__ == "__main__":
proc = Process(target=show, args=('subprocess',))
proc.start()
proc.join()
- 方法2:继承
Process
来自定义进程类,重写run
方法, 代码如下:
from multiprocessing import Process
import time
class MyProcess(Process):
def __init__(self, name):
super(MyProcess, self).__init__()
self.name = name
def run(self):
print('process name :' + str(self.name))
time.sleep(1)
if __name__ == '__main__':
for i in range(3):
p = MyProcess(i)
p.start()
for i in range(3):
p.join()
3.2 多进程通信
进程之间不共享数据的。如果进程之间需要进行通信,则要用到Queue模块
或者Pipe模块
来实现。
- Queue
Queue是多进程安全的队列,可以实现多进程之间的数据传递。它主要有两个函数put
和get
。
put() 用以插入数据到队列中,put还有两个可选参数:blocked 和timeout。如果blocked为 True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出 Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
get()可以从队列读取并且删除一个元素。同样get有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且 timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。
具体用法如下:
from multiprocessing import Process, Queue
def put(queue):
queue.put('Queue 用法')
if __name__ == '__main__':
queue = Queue()
pro = Process(target=put, args=(queue,))
pro.start()
print(queue.get())
pro.join()
- Pipe
Pipe的本质是进程之间的用管道数据传递,而不是数据共享,这和socket有点像。pipe() 返回两个连接对象分别表示管道的两端,每端都有send()和recv()函数。如果两个进程试图在同一时间的同一端进行读取和写入那么,这可能会损坏管道中的数据,具体用法如下:
from multiprocessing import Process, Pipe
def show(conn):
conn.send('Pipe 用法')
conn.close()
if __name__ == '__main__':
parent_conn, child_conn = Pipe()
pro = Process(target=show, args=(child_conn,))
pro.start()
print(parent_conn.recv())
pro.join()
3.3 进程池
创建多个进程,我们不用傻傻地一个个去创建。我们可以使用Pool
模块来搞定。Pool 常用的方法如下:
方法 | 含义 |
---|---|
apply() | 同步执行(串行) |
apply_async() | 异步执行(并行) |
terminate() | 立刻关闭进程池 |
join() | 主进程等待所有子进程执行完毕。必须在close或terminate()之后使用 |
close() | 等待所有进程结束后,才关闭进程池 |
具体用法见示例代码:
#coding: utf-8
import multiprocessing
import time
def func(msg):
print("msg:", msg)
time.sleep(3)
print("end")
if __name__ == "__main__":
# 维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
pool = multiprocessing.Pool(processes = 3)
for i in range(5):
msg = "hello %d" %(i)
# 非阻塞式,子进程不影响主进程的执行,会直接运行到 pool.join()
pool.apply_async(func, (msg, ))
# 阻塞式,先执行完子进程,再执行主进程
# pool.apply(func, (msg, ))
print("Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~")
# 调用join之前,先调用close函数,否则会出错。
pool.close()
# 执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
pool.join()
print("Sub-process(es) done.")
- 如上,进程池Pool被创建出来后,即使实际需要创建的进程数远远大于进程池的最大上限,p.apply_async(test)代码依旧会不停的执行,并不会停下等待;相当于向进程池提交了10个请求,会被放到一个队列中;
- 当执行完p1 = Pool(5)这条代码后,5条进程已经被创建出来了,只是还没有为他们各自分配任务,也就是说,无论有多少任务,实际的进程数只有5条,计算机每次最多5条进程并行。
- 当Pool中有进程任务执行完毕后,这条进程资源会被释放,pool会按先进先出的原则取出一个新的请求给空闲的进程继续执行;
- 当Pool所有的进程任务完成后,会产生5个僵尸进程,如果主线程不结束,系统不会自动回收资源,需要调用join函数去回收。
- join函数是主进程等待子进程结束回收系统资源的,如果没有join,主程序退出后不管子进程有没有结束都会被强制杀死;
- 创建Pool池时,如果不指定进程最大数量,默认创建的进程数为系统的内核数量.
4 选择多线程还是多进程?
在这个问题上,首先要看下你的程序是属于哪种类型的。一般分为两种:CPU密集型和I/O密集型。
-
CPU 密集型:程序比较偏重于计算,需要经常使用CPU来运算。例如科学计算的程序,机器学习的程序等。
-
I/O 密集型:顾名思义就是程序需要频繁进行输入输出操作。爬虫程序就是典型的I/O密集型程序。
如果程序是属于CPU密集型,建议使用多进程。而多线程就更适合应用于I/O密集型程序。
今天的文章Python之多进程与多线程分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/12648.html