大数据学习指南从入门到精通

大数据学习指南从入门到精通利用框架的力量,看懂游戏规则,才是入行的前提大多数人不懂,不会,不做,才是你的机会,你得行动,不能畏首畏尾选择才是拉差距关键,风向,比你流的汗水重要一万倍,逆风划船要累死人的为什么选择学习大数据开发,不选择Java开发?借棋弈做比喻,智商高的不要选择五子琪,要选择围棋,它能长久地吸引你。不都是在棋盘上一颗黑子一颗白子地下吗?因为围棋更复杂,能够掌握如此复杂的技艺、产生稳定输出的棋手、让我们更佩服。选择学习大数据开发也如此,能让你的职业生涯走得更远,少走弯路。

大数据学习指南从入门到精通

文章目录

大数据学习指南从入门到精通

前言

一、大数据基础

二、大数据必学Java基础

三、ZooKeeper

四、大数据环境搭建

五、Hadoop

六、Hive

七、HBase

八、Kafka

九、Scala

十、Spark

十二、新版Flink进阶学习

十三、核心面试题

最后要重塑认知

穷困一生的五个毛病


大数据学习指南从入门到精通

前言

利用框架的力量,看懂游戏规则,才是入行的前提

大多数人不懂,不会,不做,才是你的机会,你得行动,不能畏首畏尾

选择才是拉差距关键,风向,比你流的汗水重要一万倍,逆风划船要累死人的


为什么选择学习大数据开发,不选择Java开发?

借棋弈做比喻,智商高的不要选择五子琪,要选择围棋,它能长久地吸引你。

不都是在棋盘上一颗黑子一颗白子地下吗?因为围棋更复杂,能够掌握如此复杂的技艺、产生稳定输出的棋手、让我们更佩服。选择学习大数据开发也如此,能让你的职业生涯走得更远,少走弯路。

还有一点就是现在大数据等于趋势,一个向上趋势的行业会让你赚得比其他行业多。

上面这些看似没用,但又至关重要,这里我就不在强调作用,有兴趣的同学可以看看我的大数据学习探讨话题:

学习框架的重要性

我是怎么坚持学习的

怎么确定学习目标


这个栏目初学者全面整理入门的大数据必学知识,内容是按照体系划分的,集合190多篇高质量文章带你认识大数据,掌握入门的规则。

只要跟着顺序去学,把里面的体系知识掌握了,你才能真正的入门大数据,前提得自律加坚持,赶快行动吧

一、大数据基础

1、大数据概念

2、大数据的特点(5v)

3、大数据应用场景

4、大数据业务分析基本步骤

5、分布式技术

二、大数据必学Java基础

注意:这是另外的付费栏目,一般学习大数据的,默认你都是有Java和Python等语言的基础,需要你提前学好基础语言的知识。这里Java语言基础最为重要,所以单独写了一个Java的基础知识栏目给没有Java基础的同学优先学习,如果你本身就有独立Java开发能力,可以跳过这一块内容。

栏目地址:https://blog.csdn.net/xiaoweite1/category_11894631.html

三、ZooKeeper

1、ZooKeeper基本知识

2、ZooKeeper集群搭建

3、Zookeeper数据模型和节点类型

4、ZooKeeper的shell操作

5、ZooKeeper Java API操作

6、ZooKeeper选举机制

四、大数据环境搭建

1、Hadoop编译

2、分布式环境搭建

五、Hadoop

1、Hadoop介绍

2、Hadoop发展简史和特性优点

3、Hadoop国内外应用

4、Hadoop发行版公司

5、Hadoop架构

6、Hadoop集群搭建

7、HDFS分布式文件系统简介

8、HDFS的Shell命令行使用

9、HDFS的高级使用命令

10、HDFS的数据读写流程

11、HDFS的元数据辅助管理

12、HDFS的API操作

13、HDFS其他功能

14、HDFS的高可用机制

15、Hadoop的联邦机制 Federation

16、MapReduce计算模型介绍

17、MapReduce编程规范及示例编写

18、MapReduce程序运行模式和深入解析

19、MapReduce分区

20、MapReduce的排序和序列化

21、MapReuce的Combineer

22、MapReduce的自定义分组

23、MapReduce的运行机制详解

24、MapReduce高阶训练

25、YARN通俗介绍和基本架构

26、YARN三大组件介绍

27、YARN运行流程

28、YARN的调度器Scheduler

29、关于YARN常用参数设置

30、Hadoop3.x的介绍

六、Hive

1、Hive基本概念

2、Hive的三种安装模式和MySQL搭配使用

3、Hive数据库和表操作

4、Hive查询语法

5、Hive的内置函数

6、Hive的表生成函数

7、Hive的开窗函数

8、Hive自定义函数

9、Hive的数据压缩

10、Hive的数据存储格式

11、Hive调优

12、Hive综合案例

13、手撕这十道HiveSQL题吊打面试官

七、HBase

1、HBase基本简介

2、HBase集群安装操作

3、HBase数据模型

4、HBase的相关操作-客户端命令式

5、HBase的相关操作JavaAPI方式

6、HBase的高可用

7、Hbase的架构

8、Apache Phoenix的基本介绍

9、Apache Phoenix的安装

10、Apache Phoenix的基本入门操作

11、Apache Phoenix的视图操作

12、Apache Phoenix 二级索引

13、HBase读取和存储数据的流程

14、HBase的原理及其相关的工作机制

15、HBase的Bulk Load批量加载操作

16、HBase的协处理器(Coprocessor)

17、HBase全面调优

18、使用HBase的陌陌案例

八、Kafka

1、消息队列和Kafka的基本介绍

2、Kafka特点总结和架构

3、Kafka的集群搭建以及shell启动命令脚本编写

4、kafka的shell命令使用

5、Kafka的java API编写

6、安装Kafka-Eagle

7、Kafka的分片和副本机制

8、Kafka如何保证数据不丢失

9、kafka消息存储及查询机制原理

10、kafka生产者数据分发策略

11、Kafka的消费者负载均衡机制和数据积压问题

12、Kafka配额限速机制

九、Scala

注意:这是另外的付费栏目,工作上如果需要用到可以学一下。

栏目地址:大数据必学语言Scala

十、Spark

1、框架概述

2、四大特点

3、框架模块初步了解

4、三种常见的运行模式

5、环境搭建本地模式 Local

6、环境搭建集群模式 Standalone

7、应用架构基本了解

8、环境搭建集群模式 Standalone HA

9、Spark On Yarn两种模式总结

10、环境搭建集群模式 Spark on YARN

11、应用开发基于IDEA集成环境

12、Spark Core的RDD详解

13、Spark Core的RDD创建

14、Spark Core的RDD操作

15、Spark Core的RDD常用算子

16、Spark Core的RDD算子练习

17、Spark Core的RDD持久化

18、Spark Core的RDD Checkpoint

19、Spark Core的共享变量

20、Spark Core外部数据源引入

21、Spark Core案例-SogouQ日志分析

22、内核原理

23、SparkSQL 概述

24、SparkSQL数据抽象

25、SparkSQL的RDD、DF、DS相关操作

26、SparkSQL数据处理分析

27、SparkSQL案例花式查询和WordCount

28、SparkSQL案例三电影评分数据分析

29、SparkSQL案例四开窗函数

30、SparkSQL自定义UDF函数

31、Spark On Hive

32、SparkSQL的External DataSource

33、SparkSQL分布式SQL引擎

34、Spark Streaming概述

35、SparkStreaming数据抽象 DStream

36、SparkStreaming实战案例一 WordCount

37、SparkStreaming实战案例二 UpdateStateByKey

38、SparkStreaming实战案例三 状态恢复 扩展

39、SparkStreaming实战案例四 窗口函数

40、SparkStreaming实战案例五 TopN-transform

41、SparkStreaming实战案例六 自定义输出 foreachRDD

42、SparkStreaming的Kafka快速回顾与整合说明

43、SparkStreaming整合Kafka 0.10 开发使用

44、Structured Streaming概述

45、Structured Streaming Sources 输入源

46、Structured Streaming Operations 操作

47、Structured Streaming Sink 输出

48、Structured Streaming 输出终端/位置

49、Structured Streaming 整合 Kafka

50、Structured Streaming 案例一实时数据ETL架构

51、Structured Streaming 物联网设备数据分析

52、Structured Streaming 事件时间窗口分析

53、Structured Streaming Deduplication

54、扩展阅读 SparkSQL底层如何执行

55、Spark的关键技术回顾

1、乘风破浪的Flink-Flink概述

2、Flink用武之地

3、Flink安装部署 Local本地模式

4、Standalone独立集群模式

5、Standalone-HA高可用集群模式

6、Flink On Yarn模式

7、参数总结

8、Flink入门案例

9、Flink原理初探

10、流处理相关概念

11、流批一体API Source

12、流批一体API Transformation

13、流批一体API Sink

14、流批一体API Connectors JDBC

15、流批一体API Connectors Kafka

16、流批一体API Connectors Redis

17、Flink四大基石

18、Flink Window操作

19、案例一 基于时间的滚动和滑动窗口

20、案例二 基于数量的滚动和滑动窗口

21、案例三 会话窗口

22、Time与Watermaker

23、Watermaker案例演示

24、Allowed Lateness案例演示

25、Flink 状态管理

26、State代码示例

27、Flink 容错机制 Checkpoint

28、Flink 容错机制 自动重启策略和恢复

29、Flink 容错机制 Savepoint

30、Flink Table API & SQL 介绍

31、Table与SQL案例准备 依赖和程序结构

32、Table与SQL案例准备 API

33、Table与SQL相关概念

34、Table与SQL ​​​​​​案例一

35、Table与SQL ​​​​​​案例二

36、​​​​​​​Table与SQL ​​​​​​案例三

37、Table与SQL ​​​​​​案例四

38、Table与SQL ​​​​​​案例五 FlinkSQL整合Hive

39、​​​​​​​Table与SQL ​​​​​​总结 Flink-SQL常用算子

40、Flink模拟双十一实时大屏统计

41、​​​​​​​Flink实现订单自动好评

42、​​​​​​​BroadcastState

43、扩展阅读 关于并行度

44、​​​​​​扩展阅读 End-to-End Exactly-Once

45、​​​​​​扩展阅读 双流Join

46、扩展阅读 异步IO

47、扩展阅读 File Sink

48、扩展阅读 Streaming File Sink

十二、新版Flink进阶学习

1、Apache Flink是什么

2、数据架构的演变

3、Flink核心特性

4、Flink应用场景以及其他实时计算框架对比

5、Flink开发环境准备

6、Flink入门案例

7、Flink批和流案例总结

8、Apache Flink架构介绍

9、集群基础环境搭建

10、Flink集群部署

11、Flink History Server配置使用

12、Flink本地模式开启WebUI

十三、核心面试题

1、HDFS核心高频面试题

2、Hadoop的联邦机制核心高频面试题

3、MapReduce核心高频面试题

4、Yarn核心高频面试题

5、Hadoop优化核心高频面试题

6、ZooKeeper核心高频面试题

7、Flume核心高频面试题

8、Hive优化措施

最后要重塑认知

大数据学习指南从入门到精通

穷困一生的五个毛病

第一个毛病,急功近利

经常有人问看哪几本书可以改变人生,答案是看哪几本都不行,人生不是由几本书决定的,也不是由几个人决定的,它是几十本书甚至几百本构建出来的一个体系,是需要逐渐地尝试、逐渐地摸索、逐渐地碰壁,最后总结出一套适合自己的方法论。

第二个毛病,线性规划

很多人的人生是线性的,他们特别喜欢规划,恨不得一直规划到85岁。

但凡你多了解这个世界,就知道任何细致末节的规划都是没有用的。因为真实的世界是充满变数的,有的是十年磨一剑,而九年却看不到任何变化。有的是你拼尽全力准备,却根本等不来决战的机会。有的是你费尽心机算对每一个细节,一抬头,却错过了未来的风口。

规划源于确定,确定源于习惯,习惯源于读书时候的潜移默化。

60年前还没有家用电脑,50年前还没有网络,40年前还没有Java语言,30年前还没有智能手机,20年前还没有大数据,哪一个在你的规划之内呢?

第三个毛病,自我视角

所有的角度都是自己:我怎么怎么样,我做了什么什么,我学这个为什么还是没掌握,主语永远都是我。他们从来不会切换视角,从来不研究学这到底要做什么,这个知识最为主要的是什么,满脑子都想着怎么提高技能。

你得换位思考,学这个知识为了就业,那你就有应付面试官的能力,掌握高频的面试知识点。

进入公司得做项目,所以你需要提高自己的项目实战能力,基于不同的业务场景做练习。而不是对各种知识细致末节的都要学,最终都没掌握好。

第四个毛病,追求免费

真正的知识一定是很贵很贵的,绝对不是你买一本书就能学得到的,也绝对不是你看一些免费的东西就可以到手的。

任何一本数据库架构的书,都不超过100块钱,为什么一个顶级的架构工程师,可以年薪千万?

这其中的原因是真正的知识才是拉开距离的关键。能让你花钱买到,就已经很不错了。

世界是要等价交换的,你想得到一个最珍贵的东西,就得拿自己最珍贵的东西去换,绝对不是交9.9块钱的费用学了半个月就能成顶级架构师,幻想财务自由。

这个世界上最贵的东西就是“免费”,那些能拿钱去计算的,明码标价让你觉得贵的,才是信息成本最低、最便宜的方式。

第五个毛病,不懂放弃

有些人这个也想要,那个也想要,这个也舍不得,那个也舍不得,永远处在犹豫的状态当中。

找一个公司,既想待遇高,又想福利好、加班少、还要专业对口,还得有发展前景,能再给点期权就更好,这样的结果就是永远找不到合适的行业。

世界上没有完美,就算你考到700分,清华和北大也只能选一个,永远要为了一个更重要的,放弃不那么重要的。

成功很难,但是失败很容易,五个毛病,照做就行。


  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

今天的文章大数据学习指南从入门到精通分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/13048.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注