什么是表驱动编程_驱动符号表

什么是表驱动编程_驱动符号表表驱动方法(Table-Driven Methods) – winner_0715 – 博客园 https://www.cnblogs.com/winner-0715/p/9382048.html What 表驱动方法(Table-Driven Methods),在《Unix 编程艺术》中有提到,《

表驱动方法(Table-Driven Methods) – winner_0715 – 博客园 https://www.cnblogs.com/winner-0715/p/9382048.html

 


What

表驱动方法(Table-Driven Methods),在《Unix 编程艺术》中有提到,《代码大全》的第十八章对此进行了详细地讲解。

表驱动法是一种编程模式(Scheme),从表里面查找信息而不使用逻辑语句(if 和case) 它的好处是消除代码里面到处出现的if、else、swith语句,让凌乱代码变得简明和清晰。
对简单情况而言,表驱动方法可能仅仅使逻辑语句更容易和直白,但随着逻辑的越来越复杂,表驱动法就愈发有吸引力。

 

if…else…比较多的时候就想想表驱动法…

Why

先通过一个简单的例子体验下,在某些情况下,如果不使用表驱动方法,代码会如何地难看。

假设让你实现一个返回每个月天数的函数(为简单起见不考虑闰年)。

初级码农的笨方法是马上摆出 12 副威武雄壮的 if-else 组合拳:

复制代码
int iGetMonthDays(int iMonth){
    int iDays;
    
    if(1 == iMonth) {iDays = 31;}
    else if(2 == iMonth) {iDays = 28;}
    else if(3 == iMonth) {iDays = 31;}
    else if(4 == iMonth) {iDays = 30;}
    else if(5 == iMonth) {iDays = 31;}
    else if(6 == iMonth) {iDays = 30;}
    else if(7 == iMonth) {iDays = 31;}
    else if(8 == iMonth) {iDays = 31;}
    else if(9 == iMonth) {iDays = 30;}
    else if(10 == iMonth) {iDays = 31;}
    else if(11 == iMonth) {iDays = 30;}
    else if(12 == iMonth) {iDays = 31;}
    
    return iDays;
}
复制代码

稍微机灵点的码农发现每月天数无外乎 28、30、31 三种,或许会用 switch-case “裁剪”下:

复制代码
int iGetMonthDays(int iMonth){
    int iDays;
    
    switch (iMonth) {
        case 1:
        case 3:
        case 5:
        case 7:
        case 8:
        case 10:
        case 12:{iDays = 31;break;}
        case 2:{iDays = 28;break;}
        case 4:
        case 6:
        case 9:
        case 11:{iDays = 30;break;}
    }
    
    return iDays;
}
复制代码

这两种方法充斥了大量的逻辑判断,还凭空冒出了一大堆1,2,…,11,12这样的 Magic Number(魔鬼数字公然出现在程序里是很 ugly 的做法),不利于代码的维护与扩展。

表驱动处理起来就赏心悦目得多了:

static int monthDays[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

int iGetMonthDays(int iMonth){
    return monthDays[(iMonth - 1)];
}

How

表驱动可以使你的代码更简洁,结构更加灵活,多用于逻辑性不强但是分支多的情况。

如何使用表驱动法?需要明确两个关键问题:

  • 表的形式及表中放什么内容

    • 表形式可以为一维数组、二维数组和结构体数组。
    • 表中可以存放数值、字符串或函数指针等数据。
  • 如何去访问表。

下面介绍表的三种访问方式:

直接访问

直接根据“键”来获得“值”,给定下标 index,然后array[index]就获得数组在相应下标处的数值。例如前面这个根据月份取天数的例子。

什么是表驱动编程_驱动符号表

索引访问

什么是表驱动编程_驱动符号表

它适用于这样的情况:假设你经营一家商店,有 100 种商品,每种商品都有一个 ID 号,但很多商品的描述都差不多,所以只有 30 条不同的描述,如何建立建立商品与商品描述的表?

还是同上面做法来一一对应吗?那样描述会扩充到 100 个,会有 70 个描述是重复的!太浪费了。

方法是建立一个 100 长的索引和 30 长的描述,然后这些索引指向相应的描述(不同的索引可以指向相同的描述),这样就解决了表数据冗余的问题啦。

复制代码
struct product_t {
    char * id;
    int desc_index;
};

const char * desc[] = {
    "description_1",
    "description_2",
    ...
    "description_29",
    "description_30"
};

const product_t goods [] = {
    {"id_1", 3},
    {"id_2", 1},
    ...
    {"id_99", 12},
    {"id_100", 5}
};

const char* desc_product (const char* id) {
    for (const product_t & p : goods) {
        if (strcmp(p.id, id) == 0) {
            return desc[p.desc_index - 1];
        }
    }

    return NULL;
}
复制代码

阶梯访问

什么是表驱动编程_驱动符号表

例子:将百分制成绩转成五级分制(我们用的优、良、中、合格、不合格,西方用的 A、B、C、D和F),假定转换关系:

Score Degree
[90-100] A
[80,90) B
[70,80) C
[60,70) D
[0,60) F

 如何用表格表示这些范围?你当然可以用第一种直接访问的方法:申请一个 100 长的表,然后在这个表中填充相应的等级。很明显,也会浪费大量空间,有没有更好的方法?

对于这种“某个范围区间内,对应某个值”的逻辑规则,可用阶梯访问的方式。

复制代码
const char gradeTable[] = {
    'A', 'B', 'C', 'D', 'F'
};

const int downLimit[] = {
    90, 80, 70, 60
};

int degree(int score)
{
    int gradeLevel = 0;
    char lowestDegree = gradeTable[sizeof(gradeTable)/sizeof(gradeTable[0]) - 1];
    
    // 这里可用二分查找优化
    while (gradeTable[gradeLevel] != lowestDegree) {
        if(score < downLimit[gradeLevel]) {
            ++ gradeLevel;
        } else {
            break;
        }
    }

    return gradeTable[gradeLevel];
}
复制代码

将来如果等级规则变了(比如 85~100 分为等级 A,或添加 50~60 分为等级 E),只需要修改 gradeTable 和 downLimit 表就行,degree 函数可以保持一行都不改动。

更进一步地,gradeTable 和 downLimit 表还可以配置文件的形式表示,主程序从外部文件 load 进来就行,程序灵活性大大增加。

Review

伟大的 C 语言大师 Rob Pike 有句话说的好:

数据压倒一切。如果选择了正确的数据结构并把一切组织的井井有条,正确的算法就不言自明。编程的核心是数据结构,而不是算法。

对人类来说,数据比编程逻辑更容易驾驭。在复杂数据和复杂代码中选择,宁可选择前者。

更进一步,在设计中,应该主动将代码的复杂度转移到数据中去。

这里谈到了 Unix 哲学之分离原则:

策略同机制分离

机制,即提供的功能。

策略,即如何使用功能。

以百分制转五级分制为例,机制就是 degree 函数:你给一个百分制分数给它,它吐出来一个五级分制给你。策略就是gradeTable 和 downLimit 这两个表,它规定了哪个区间的分数对应哪个等级。

从 degree 的实现可以看出:对机制而言,策略是透明的(degree 完全看不到 gradeTable 和 downLimit 这两个表的内部规则)。

将两者分离,可以使机制(degree)相对保持稳定,而同时支持策略(表)的变化。

Ref:

表驱动

 

 

 

今天的文章什么是表驱动编程_驱动符号表分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/51915.html

(0)
编程小号编程小号
上一篇 2023-08-31 21:17
下一篇 2023-08-31 21:30

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注