时间序列方法_时间序列的分析方法有哪些

时间序列方法_时间序列的分析方法有哪些1、时间序列基本规则法-周期因子法 提取时间序列的周期性特征进行预测,参考:时间序列规则法快速入门 计算周期因子factors 计算base 预测=base*factors 观察序列,当序列存在周期性时,可以用周期因子法做为baseline 在天池竞赛-资金流入流出预测-挑战Baseline-天池大

时间序列方法_时间序列的分析方法有哪些

1、时间序列基本规则法-周期因子法

 

2、线性回归-利用时间特征做线性回归

  • 提取时间的周期性特点做为特征,此时训练集每条样本为”时间特征->目标值”,时间序列的依赖关系被剔除,不需要严格依赖滑窗截取训练样本。常见是将时间用0-1哑变量表达,有以下若干种特征:
    • 将星期转化为了0-1变量,从周一至周天,独热编码共7个变量
    • 将节假日转化为0-1变量,视具体节假日数目,可简单分为两类,”有假日”-“无假日”,独热编码共2个变量;或赋予不同编码值,如区分国庆、春节、劳动节等使用1、2、3表示
    • 将月初转化为0-1变量,简单分两类表示为”是月初”-“非月初”,共2个特征
    • 类似的月中、月初可以转化为0-1变量
    • 控制时间粒度,区分是weekday or weekend
  • 观察序列,当序列存在周期性时,线性回归也可做为baseline

3、传统时序建模方法,ARMA/ARIMA等线性模型。参考:

4、时间序列分解,使用加法模型或乘法模型将原始序列拆分为4部分。

5、特征工程着手,时间滑窗改变数据的组织方式,使用xgboost/LSTM模型/时间卷积网络等。参考:

6、转化为监督学习数据集,使用xgboot/LSTM模型/时间卷积网络/seq2seq(attention_based_model)。参考:

7、Facebook-prophet,类似于STL分解思路,因为觉得在控制程度和可解释性上比传统时序模型更有优势,所以单独列车。参考:

  • 官网说明(英文)
  • 官网notbook(英文)
  • 中文推荐

    的文章,从原理到使用都有介绍,很良心。张戎:Facebook 时间序列预测算法 Prophet 的研究

  • 个人理解,想进一步用好,可以好好看看论文和官网,有空撸遍python的源码
  • 理解prior_scale在代码中如何实现控制趋势项、季节项和节假日项
  • 对于趋势项参数changepoint_range、changepoint_prior_scale如何影响模型拟合和泛化程度
  • 趋势项中的Uncertainty-Intervals(interval_width参数)如何在预测结果使用
  • 论文中的”Simulated Historical Forecasts”对应prophet的Diagnostics工具,可以利用该工具做时间序列的交叉验证评价模型准确程度,如何利用该工具调整模型

8、深度学习网络,结合CNN+RNN+Attention,作用各不相同互相配合。目前也只是看了论文,有代码的顺便给出代码链接,代码还没细看。

主要设计思想:

  • CNN捕捉短期局部依赖关系
  • RNN捕捉长期宏观依赖关系
  • Attention为重要时间段或变量加权
  • AR捕捉数据尺度变化(没太搞懂啥意思~)

方法:

代码

作者:BINGO Hong
链接:https://zhuanlan.zhihu.com/p/67832773

今天的文章时间序列方法_时间序列的分析方法有哪些分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/52058.html

(0)
编程小号编程小号
上一篇 2023-08-31
下一篇 2023-08-31

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注