OKHttp详解_http与https

OKHttp详解_http与httpsOkHttp是一套处理HTTP网络请求的依赖库,由Square公司设计研发并开源,目前可以在Java和Kotlin中使用

OkHttp 是一套处理 HTTP 网络请求的依赖库,由 Square 公司设计研发并开源,目前可以在 Java 和 Kotlin 中使用。对于 Android App 来说,OkHttp 现在几乎已经占据了所有的网络请求操作,RetroFit + OkHttp 实现网络请求似乎成了一种标配。因此它也是每一个 Android 开发工程师的必备技能,了解其内部实现原理可以更好地进行功能扩展、封装以及优化。

网络请求流程分析

先看下 OkHttp 的基本使用:

OKHttp详解_http与https

除了直接 new OkHttpClient 之外,还可以使用内部工厂类 Builder 来设置 OkHttpClient。如下所示:

OKHttp详解_http与https

请求操作的起点从 OkHttpClient.newCall().enqueue() 方法开始:

newCall

OKHttp详解_http与https

RealCall.enqueue

调用 Dispatcher 的入队方法,执行一个异步网络请求的操作。

OKHttp详解_http与https

可以看出,最终请求操作是委托给 Dispatcher的enqueue 方法内实现的。

Dispatcher 是 OkHttpClient 的调度器,是一种门户模式。主要用来实现执行、取消异步请求操作。本质上是内部维护了一个线程池去执行异步操作,

并且在 Dispatcher 内部根据一定的策略,保证最大并发个数、同一 host 主机允许执行请求的线程个数等。

Dispatcher的enqueue 方法的具体实现如下:

OKHttp详解_http与https

可以看出,实际上就是使用线程池执行了一个 AsyncCall,而 AsyncCall 实现了 Runnable 接口,因此整个操作会在一个子线程(非 UI 线程)中执行。

继续查看 AsyncCall 中的 run 方法如下:

OKHttp详解_http与https

在 run 方法中执行了另一个 execute 方法,而真正获取请求结果的方法是在 getResponseWithInterceptorChain 方法中,从名字也能看出其内部是一个拦截器的调用链,具体代码如下:

OKHttp详解_http与https

每一个拦截器的作用如下。

  • BridgeInterceptor:主要对 Request 中的 Head 设置默认值,比如 Content-Type、Keep-Alive、Cookie 等。
  • CacheInterceptor:负责 HTTP 请求的缓存处理。
  • ConnectInterceptor:负责建立与服务器地址之间的连接,也就是 TCP 链接。
  • CallServerInterceptor:负责向服务器发送请求,并从服务器拿到远端数据结果。
  • 在添加上述几个拦截器之前,会调用 client.interceptors 将开发人员设置的拦截器添加到列表当中。

对于 Request 的 Head 以及 TCP 链接,我们能控制修改的成分不是很多。

总结

1.Okhttp是对Socket的封装。有三个主要的类,Request,Response,Call

2.默认使用new OkHttpClient() 创建初client对象。如果需要初始化网络请求的参数,如timeout,interceptor等,可以创建Builder,通过builder.build() 创建初client对象。

3.使用new Request.Builder().url().builder()创建初requst对象。

4.通过client.newCall()创建出call对象,同步使用call.excute(), 异步使用call,enqueue(). 这里Call是个接口,具体的实现在RealCall这个实现类里面。

Okhttp的高效体现在,okhttp内有个Dispatcher类,是okhttp内部维护的一个线程池,对最大连接数,host最大访问量做了初始定义。维护3个队列及1个线程池

readyAsyncCalls

待访问请求队列,里面存储准备执行的请求。

runningAsyncCalls

异步请求队列,里面存储正在执行,包含已经取消但是还没有结束的请求。

runningSyncCalls

同步请求队列,正在执行的请求,包含已经取消但是还没有结束的请求。

ExecutorService

线程池,最小0,最大Max的线程池

在执行call.excute()的时候,调用到realcall类里的excute方法,这个是同步方法,在方法的第一行就加了锁,判断executed标记,如果是true就抛出异常,保证一个请求只被执行一次。false的话继续向下执行。调用client.dispatcher.excute()进入到dispatcher类中,向runningSyncCalls队列中添加当前这个请求。执行结束会调用finished方法

如果是异步操作,会创建一个RealCall.AsyncCall对象,AsyncCall继承的NamedRunnable接口,NamedRunnable是个runnable。进入到Dispatcher的enqueue()方法中,首先判断线程池中线程的数据,host的访问量,如果都没有达到那么加入到runningAsyncCalls中,并执行。否则加入到readyAsyncCalls队列中。
finished方法,如果是异步操作,promoteCall方法,promoteCalls()中用迭代器遍历readyAsyncCalls 然后加入到runningAsyncCalls

RealConnection

真正的连接操作类,对soket封装,http1/http2的选择,ssl协议等等信息。一个recalconnection就是一次链接

ConnectionPool

链接池,管理http1/http2的连接,同一个address共享一个connection,实现链接的复用。

StreamAlloction

保存了链接信息,address,HttpCodec,realconnection,connectionpool等信息

常见问题:

OKHttp有哪些拦截器,分别起什么作用?

OKHTTP的拦截器是把所有的拦截器放到一个list里,然后每次依次执行拦截器,并且在每个拦截器分成三部分:

  • 预处理拦截器内容
  • 通过proceed方法把请求交给下一个拦截器
  • 下一个拦截器处理完成并返回,后续处理工作。

这样依次下去就形成了一个链式调用,看看源码,具体有哪些拦截器:

  Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
    return chain.proceed(originalRequest);
  }

根据源码可知,一共七个拦截器:

  • addInterceptor(Interceptor),这是由开发者设置的,会按照开发者的要求,在所有的拦截器处理之前进行最早的拦截处理,比如一些公共参数,Header都可以在这里添加。
  • RetryAndFollowUpInterceptor,这里会对连接做一些初始化工作,以及请求失败的充实工作,重定向的后续请求工作。跟他的名字一样,就是做重试工作还有一些连接跟踪工作。
  • BridgeInterceptor,这里会为用户构建一个能够进行网络访问的请求,同时后续工作将网络请求回来的响应Response转化为用户可用的Response,比如添加文件类型,content-length计算添加,gzip解包。
  • CacheInterceptor,这里主要是处理cache相关处理,会根据OkHttpClient对象的配置以及缓存策略对请求值进行缓存,而且如果本地有了可⽤的Cache,就可以在没有网络交互的情况下就返回缓存结果。
  • ConnectInterceptor,这里主要就是负责建立连接了,会建立TCP连接或者TLS连接,以及负责编码解码的HttpCodec
  • networkInterceptors,这里也是开发者自己设置的,所以本质上和第一个拦截器差不多,但是由于位置不同,所以用处也不同。这个位置添加的拦截器可以看到请求和响应的数据了,所以可以做一些网络调试。
  • CallServerInterceptor,这里就是进行网络数据的请求和响应了,也就是实际的网络I/O操作,通过socket读写数据。

OkHttp怎么实现连接池

  • 为什么需要连接池?

频繁的进行建立Sokcet连接和断开Socket是非常消耗网络资源和浪费时间的,所以HTTP中的keepalive连接对于降低延迟和提升速度有非常重要的作用。keepalive机制是什么呢?也就是可以在一次TCP连接中可以持续发送多份数据而不会断开连接。所以连接的多次使用,也就是复用就变得格外重要了,而复用连接就需要对连接进行管理,于是就有了连接池的概念。

OkHttp中使用ConectionPool实现连接池,默认支持5个并发KeepAlive,默认链路生命为5分钟。

  • 怎么实现的?

1)首先,ConectionPool中维护了一个双端队列Deque,也就是两端都可以进出的队列,用来存储连接。
2)然后在ConnectInterceptor,也就是负责建立连接的拦截器中,首先会找可用连接,也就是从连接池中去获取连接,具体的就是会调用到ConectionPool的get方法。

RealConnection get(Address address, StreamAllocation streamAllocation, Route route) {
    assert (Thread.holdsLock(this));
    for (RealConnection connection : connections) {
      if (connection.isEligible(address, route)) {
        streamAllocation.acquire(connection, true);
        return connection;
      }
    }
    return null;
  }

也就是遍历了双端队列,如果连接有效,就会调用acquire方法计数并返回这个连接。

3)如果没找到可用连接,就会创建新连接,并会把这个建立的连接加入到双端队列中,同时开始运行线程池中的线程,其实就是调用了ConectionPool的put方法。

public final class ConnectionPool {
    void put(RealConnection connection) {
        if (!cleanupRunning) {
            //没有连接的时候调用
            cleanupRunning = true;
            executor.execute(cleanupRunnable);
        }
        connections.add(connection);
    }
}

  其实这个线程池中只有一个线程,是用来清理连接的,也就是上述的cleanupRunnable

private final Runnable cleanupRunnable = new Runnable() {
        @Override
        public void run() {
            while (true) {
                //执行清理,并返回下次需要清理的时间。
                long waitNanos = cleanup(System.nanoTime());
                if (waitNanos == -1) return;
                if (waitNanos > 0) {
                    long waitMillis = waitNanos / 1000000L;
                    waitNanos -= (waitMillis * 1000000L);
                    synchronized (ConnectionPool.this) {
                        //在timeout时间内释放锁
                        try {
                            ConnectionPool.this.wait(waitMillis, (int) waitNanos);
                        } catch (InterruptedException ignored) {
                        }
                    }
                }
            }
        }
    };

这个runnable会不停的调用cleanup方法清理线程池,并返回下一次清理的时间间隔,然后进入wait等待。

怎么清理的呢?看看源码:

long cleanup(long now) {
    synchronized (this) {
      //遍历连接
      for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {
        RealConnection connection = i.next();

        //检查连接是否是空闲状态,
        //不是,则inUseConnectionCount + 1
        //是 ,则idleConnectionCount + 1
        if (pruneAndGetAllocationCount(connection, now) > 0) {
          inUseConnectionCount++;
          continue;
        }

        idleConnectionCount++;

        // If the connection is ready to be evicted, we're done.
        long idleDurationNs = now - connection.idleAtNanos;
        if (idleDurationNs > longestIdleDurationNs) {
          longestIdleDurationNs = idleDurationNs;
          longestIdleConnection = connection;
        }
      }

      //如果超过keepAliveDurationNs或maxIdleConnections,
      //从双端队列connections中移除
      if (longestIdleDurationNs >= this.keepAliveDurationNs
          || idleConnectionCount > this.maxIdleConnections) {      
        connections.remove(longestIdleConnection);
      } else if (idleConnectionCount > 0) {      //如果空闲连接次数>0,返回将要到期的时间
        // A connection will be ready to evict soon.
        return keepAliveDurationNs - longestIdleDurationNs;
      } else if (inUseConnectionCount > 0) {
        // 连接依然在使用中,返回保持连接的周期5分钟
        return keepAliveDurationNs;
      } else {
        // No connections, idle or in use.
        cleanupRunning = false;
        return -1;
      }
    }

    closeQuietly(longestIdleConnection.socket());

    // Cleanup again immediately.
    return 0;
  }

也就是当如果空闲连接maxIdleConnections超过5个或者keepalive时间大于5分钟,则将该连接清理掉。

4)这里有个问题,怎样属于空闲连接?

其实就是有关刚才说到的一个方法acquire计数方法:

  public void acquire(RealConnection connection, boolean reportedAcquired) {
    assert (Thread.holdsLock(connectionPool));
    if (this.connection != null) throw new IllegalStateException();

    this.connection = connection;
    this.reportedAcquired = reportedAcquired;
    connection.allocations.add(new StreamAllocationReference(this, callStackTrace));
  }

RealConnection中,有一个StreamAllocation虚引用列表allocations。每创建一个连接,就会把连接对应的StreamAllocationReference添加进该列表中,如果连接关闭以后就将该对象移除。

其实可以这样理解,在上层反复调用acquire和release函数,来增加或减少connection.allocations所维持的集合的大小,到最后如果size大于0,则代表RealConnection还在使用连接,如果size等于0,那就说明已经处于空闲状态了

5)连接池的工作就这么多,并不复杂,主要就是管理双端队列Deque<RealConnection>,可以用的连接就直接用,然后定期清理连接,同时通过对StreamAllocation的引用计数实现自动回收。

OkHttp里面用到了什么设计模式

  • 责任链模式

这个不要太明显,可以说是okhttp的精髓所在了,主要体现就是拦截器的使用,具体代码可以看看上述的拦截器介绍。

  • 建造者模式

在Okhttp中,建造者模式也是用的挺多的,主要用处是将对象的创建与表示相分离,用Builder组装各项配置。
比如Request:

public class Request {
  public static class Builder {
    @Nullable HttpUrl url;
    String method;
    Headers.Builder headers;
    @Nullable RequestBody body;
    public Request build() {
      return new Request(this);
    }
  }
}
  • 工厂模式

工厂模式和建造者模式类似,区别就在于工厂模式侧重点在于对象的生成过程,而建造者模式主要是侧重对象的各个参数配置。
例子有CacheInterceptor拦截器中又个CacheStrategy对象:

    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();

    public Factory(long nowMillis, Request request, Response cacheResponse) {
      this.nowMillis = nowMillis;
      this.request = request;
      this.cacheResponse = cacheResponse;

      if (cacheResponse != null) {
        this.sentRequestMillis = cacheResponse.sentRequestAtMillis();
        this.receivedResponseMillis = cacheResponse.receivedResponseAtMillis();
        Headers headers = cacheResponse.headers();
        for (int i = 0, size = headers.size(); i < size; i++) {
          String fieldName = headers.name(i);
          String value = headers.value(i);
          if ("Date".equalsIgnoreCase(fieldName)) {
            servedDate = HttpDate.parse(value);
            servedDateString = value;
          } else if ("Expires".equalsIgnoreCase(fieldName)) {
            expires = HttpDate.parse(value);
          } else if ("Last-Modified".equalsIgnoreCase(fieldName)) {
            lastModified = HttpDate.parse(value);
            lastModifiedString = value;
          } else if ("ETag".equalsIgnoreCase(fieldName)) {
            etag = value;
          } else if ("Age".equalsIgnoreCase(fieldName)) {
            ageSeconds = HttpHeaders.parseSeconds(value, -1);
          }
        }
      }
    }

  • 观察者模式

之前我写过一篇文章,是关于Okhttp中websocket的使用,由于webSocket属于长连接,所以需要进行监听,这里是用到了观察者模式:

  final WebSocketListener listener;
  @Override public void onReadMessage(String text) throws IOException {
    listener.onMessage(this, text);
  }

  • 单例模式

这个就不举例了,每个项目都会有

OkHttp中为什么使用构建者模式?

使用多个简单的对象一步一步构建成一个复杂的对象;

  • 优点: 当内部数据过于复杂的时候,可以非常方便的构建出我们想要的对象,并且不是所有的参数我们都需要进行传递;
  • 缺点: 代码会有冗余

怎么设计一个自己的网络访问框架,为什么这么设计?

我目前还没有正式设计过网络访问框架,

是我自己设计的话,我会从以下两个方面考虑

  • 先参考现有的框架,找一个比较合适的框架作为启动点,比如说,基于上面讲到的okhttp的优点,选择okhttp的源码进行阅读,并且将主线的流程抽取出,为什么这么做,因为okhttp里面虽然涉及到了很多的内容,但是我们用到的内容并不是特别多;保证先能运行起来一个基本的框架;
  • 考虑拓展,有了基本框架之后,我会按照我目前在项目中遇到的一些需求或者网路方面的问题,看看能不能基于我这个框架进行优化,比如服务器它设置的缓存策略,
    我应该如何去编写客户端的缓存策略去对应服务器的,还比如说,可能刚刚去建立基本的框架时,不会考虑HTTPS的问题,那么也会基于后来都要求https,进行拓展;

为什么要基于Okhttp,就是因为它是基于Socket,从我个人角度讲,如果能更底层的深入了解相关知识,这对我未来的技术有很大的帮助;

如何考虑app的安全性?

1:使用https协议进行交互
2:数据交互时,根据业务分出哪些是敏感信息,凡是敏感信息使用对称加密方式,如果是类似密码的,则使用不可逆的加密方式;md5
3:考虑跟钱相关,或者同等重要的数据接口,需要做多重验证,比如:前端加密请求参数,合并请求参数生成MD5码,服务器端做多重认证,最好能对比本地数据库或者缓存之类的信息;
4:混淆,
5: app加固,dex文件进行加密,这种方式,可以通过”内存下载“,不安全,也只是为了增加激活成功教程难度;
6:将加密算法,一些核心数据添加到so文件中;

转载:谈谈OKHttp的几道面试题 – 简书

          OkHttp分析面试总结 – 简书

          OKHttp详解

         Android 工程师进阶 34 讲

今天的文章OKHttp详解_http与https分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/75687.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注