最近在项目开发中遇到了一些问题,项目为多机部署,使用kibana收集日志,但并发大时使用日志定位比较麻烦,大量日志输出导致很难筛出指定请求的全部相关日志,以及下游服务调用对应的日志。因此计划对项目日志打印进行一些小改造,使用一个traceId跟踪请求的全部路径,前提是不修改原有的打印方式。
简单的解决思路
想要跟踪请求,第一个想到的就是当请求来时生成一个traceId放在ThreadLocal里,然后打印时去取就行了。但在不改动原有输出语句的前提下自然需要日志框架的支持了,搜索的一番发现主流日志框架都提供了MDC功能。
MDC
MDC 介绍
MDC(Mapped Diagnostic Context,映射调试上下文)是 log4j 和 logback 提供的一种方便在多线程条件下记录日志的功能。MDC 可以看成是一个与当前线程绑定的Map,可以往其中添加键值对。MDC 中包含的内容可以被同一线程中执行的代码所访问。当前线程的子线程会继承其父线程中的 MDC 的内容。当需要记录日志时,只需要从 MDC 中获取所需的信息即可。MDC 的内容则由程序在适当的时候保存进去。对于一个 Web 应用来说,通常是在请求被处理的最开始保存这些数据。
简而言之,MDC就是日志框架提供的一个InheritableThreadLocal
,项目代码中可以将键值对放入其中,然后使用指定方式取出打印即可。
在 log4j 和 logback 的取值方式为:
%X{traceid}
初步实现
首先创建拦截器,加入拦截列表中,在请求到达时生成traceId。当然你还可以根据需求在此处后或后续流程中放入spanId、订单流水号等需要打印的信息。
public class Constants {
/** * 日志跟踪id名。 */
public static final String LOG_TRACE_ID = "traceid";
/** * 请求头跟踪id名。 */
public static final String HTTP_HEADER_TRACE_ID = "app_trace_id";
}
import org.slf4j.MDC;
public class TraceInterceptor extends HandlerInterceptorAdapter {
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) {
// "traceId"
MDC.put(Constants.LOG_TRACE_ID, TraceLogUtils.getTraceId());
return true;
}
}
然后在日志配置xml文件中添加traceId打印:
<property name="normal-pattern" value="[%p][%d{yyyy-MM-dd'T'HH:mm:ss.SSSZ,Asia/Shanghai}][%X{traceid}][%15.15t][%c:%L] %msg%n"/>
初步改造完成!是不是感觉还挺简单的?且慢,仅仅这样的改造在实际使用过程中会遇到以下问题:
- 线程池中的线程会打印错误的traceId
- 调用下游服务后会生成新的traceId,无法继续跟踪
下面来一一解决这些问题。
支持线程池跟踪
MDC使用的InheritableThreadLocal
只是在线程被创建时继承,但是线程池中的线程是复用的,后续请求使用已有的线程将打印出之前请求的traceId。这时候就需要对线程池进行一定的包装,在线程在执行时读取之前保存的MDC内容。不仅自身业务会用到线程池,spring项目也使用到了很多线程池,比如@Async
异步调用,zookeeper线程池、kafka线程池等。不管是哪种线程池都大都支持传入指定的线程池实现,拿@Async
举例:
@Bean("SpExecutor")
public Executor getAsyncExecutor() {
// 对线程池进行包装,使之支持traceId透传
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor() {
@Override
public <T> Future<T> submit(Callable<T> task) {
// 传入线程池之前先复制当前线程的MDC
return super.submit(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
@Override
public void execute(Runnable task) {
super.execute(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
};
executor.setCorePoolSize(config.getPoolCoreSize());
... // 其他配置
executor.initialize();
return executor;
}
public static <T> Callable<T> wrap(final Callable<T> callable, final Map<String, String> context) {
return new Callable<T>() {
@Override
public T call() throws Exception {
// 实际执行前导入对应请求的MDC副本
if (context == null) {
MDC.clear();
} else {
MDC.setContextMap(context);
}
if (MDC.get(Constants.LOG_TRACE_ID) == null) {
MDC.put(Constants.LOG_TRACE_ID, TraceLogUtils.getTraceId());
}
try {
return callable.call();
} finally {
MDC.clear();
}
}
};
}
ThreadPoolExecutor
的包装也类似,注意为了严谨考虑,需要对连接池中的所有调用方法进行封装。
在ThreadPoolExecutor
中有:
public void execute(Runnable command)
public <T> Future<T> submit(Callable<T> task)
public Future<?> submit(Runnable task)
public <T> Future<T> submit(Runnable task, T result)
在ThreadPoolTaskExecutor
中有:
public void execute(Runnable command)
public void execute(Runnable task, long startTimeout)
public Future<?> submit(Runnable task)
public <T> Future<T> submit(Runnable task, T result)
public <T> ListenableFuture<T> submitListenable(Callable<T> task)
public ListenableFuture<?> submitListenable(Runnable task)
方式与上述的实现类似,不做赘述。
提供一下我的工具类:
public class ThreadMdcUtil {
public static void setTraceIdIfAbsent() {
if (MDC.get(Constants.LOG_TRACE_ID) == null) {
MDC.put(Constants.LOG_TRACE_ID, TraceLogUtils.getTraceId());
}
}
public static void setTraceId() {
MDC.put(Constants.LOG_TRACE_ID, TraceLogUtils.getTraceId());
}
public static void setTraceId(String traceId) {
MDC.put(Constants.LOG_TRACE_ID, traceId);
}
public static <T> Callable<T> wrap(final Callable<T> callable, final Map<String, String> context) {
return () -> {
if (context == null) {
MDC.clear();
} else {
MDC.setContextMap(context);
}
setTraceIdIfAbsent();
try {
return callable.call();
} finally {
MDC.clear();
}
};
}
public static Runnable wrap(final Runnable runnable, final Map<String, String> context) {
return () -> {
if (context == null) {
MDC.clear();
} else {
MDC.setContextMap(context);
}
setTraceIdIfAbsent();
try {
runnable.run();
} finally {
MDC.clear();
}
};
}
public static class ThreadPoolTaskExecutorMdcWrapper extends ThreadPoolTaskExecutor {
@Override
public void execute(Runnable task) {
super.execute(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
@Override
public void execute(Runnable task, long startTimeout) {
super.execute(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()), startTimeout);
}
@Override
public <T> Future<T> submit(Callable<T> task) {
return super.submit(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
@Override
public Future<?> submit(Runnable task) {
return super.submit(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
@Override
public ListenableFuture<?> submitListenable(Runnable task) {
return super.submitListenable(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
@Override
public <T> ListenableFuture<T> submitListenable(Callable<T> task) {
return super.submitListenable(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
}
public static class ThreadPoolExecutorMdcWrapper extends ThreadPoolExecutor {
public ThreadPoolExecutorMdcWrapper(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
}
public ThreadPoolExecutorMdcWrapper(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory);
}
public ThreadPoolExecutorMdcWrapper(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, handler);
}
public ThreadPoolExecutorMdcWrapper(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);
}
@Override
public void execute(Runnable task) {
super.execute(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
@Override
public <T> Future<T> submit(Runnable task, T result) {
return super.submit(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()), result);
}
@Override
public <T> Future<T> submit(Callable<T> task) {
return super.submit(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
@Override
public Future<?> submit(Runnable task) {
return super.submit(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
}
public static class ForkJoinPoolMdcWrapper extends ForkJoinPool {
public ForkJoinPoolMdcWrapper() {
super();
}
public ForkJoinPoolMdcWrapper(int parallelism) {
super(parallelism);
}
public ForkJoinPoolMdcWrapper(int parallelism, ForkJoinWorkerThreadFactory factory,
Thread.UncaughtExceptionHandler handler, boolean asyncMode) {
super(parallelism, factory, handler, asyncMode);
}
@Override
public void execute(Runnable task) {
super.execute(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
@Override
public <T> ForkJoinTask<T> submit(Runnable task, T result) {
return super.submit(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()), result);
}
@Override
public <T> ForkJoinTask<T> submit(Callable<T> task) {
return super.submit(ThreadMdcUtil.wrap(task, MDC.getCopyOfContextMap()));
}
}
}
下游服务使用相同traceId
以上方式在多级服务调用中每个服务都会生成新的traceId,导致无法衔接跟踪。这时就需要对http调用工具进行相应的改造了,在发送http请求时自动将traceId添加到header中,以RestTemplate为例,注册拦截器:
// 以下省略其他相关配置
RestTemplate restTemplate = new RestTemplate();
// 使用拦截器包装http header
restTemplate.setInterceptors(new ArrayList<ClientHttpRequestInterceptor>() {
{
add((request, body, execution) -> {
String traceId = MDC.get(Constants.LOG_TRACE_ID);
if (StringUtils.isNotEmpty(traceId)) {
request.getHeaders().add(Constants.HTTP_HEADER_TRACE_ID, traceId);
}
return execution.execute(request, body);
});
}
});
HttpComponentsClientHttpRequestFactory factory = new HttpComponentsClientHttpRequestFactory();
// 注意此处需开启缓存,否则会报getBodyInternal方法“getBody not supported”错误
factory.setBufferRequestBody(true);
restTemplate.setRequestFactory(factory);
下游服务的拦截器改为:
public class TraceInterceptor extends HandlerInterceptorAdapter {
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) {
String traceId = request.getHeader(Constants.HTTP_HEADER_TRACE_ID);
if (StringUtils.isEmpty(traceId)) {
traceId = TraceLogUtils.getTraceId();
}
MDC.put(Constants.LOG_TRACE_ID, traceId);
return true;
}
}
若使用自定义的http客户端,则直接修改其工具类即可。
针对其他协议的调用暂无实践经验,可以借鉴上面的思路,通过拦截器插入特定字段,再在下游读取指定字段加入MDC中。
总结
实现日志跟踪的基本方案没有太大难度,重在实践中发现问题并一层一层解决问题的思路。
今天的文章java跟踪变量_java轮询的实现方式分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:http://bianchenghao.cn/77472.html