rlc阻抗计算公式_RLC并联电路阻抗表达式

rlc阻抗计算公式_RLC并联电路阻抗表达式可以看到,RLC三者的电压幅度峰值,如果全部加起来是大于电源电压的幅度峰值10V的,之所以这样,因为RLC各自的电压在相位上有差异,在某个具体的时间点(t)上此消彼长,所以加起来不会大于电源电压

一、RLC(串联)电路的阻抗

如果一个电路由R1、R2、R3组成,那么它的电阻是不是很容易计算?如下图中的R = R1 + R2 + R3。

rlc阻抗计算公式_RLC并联电路阻抗表达式

图1-简单电阻计算

如果一个电路由R、L、C组成,那么它的阻抗是多少?难道也是电阻和阻抗的累加吗?

rlc阻抗计算公式_RLC并联电路阻抗表达式
图2-RLC电路阻抗计算

我们知道,当电路中有电感、电容器件时,电路不再表现出纯电阻特性,而要用阻抗来描述。

阻抗(Impedance)相比于电阻(Resistance)来说,考虑了两方面因素:

  1. 输入信号的频率对阻抗的影响;
  2. 计算电压U和电流I的相位差异;

纯电感的阻抗称为“感抗”,用符号XL表示;纯电容的阻抗称为“容抗”,用符号XC表示。它们统称为“电抗”(Reactance)。

理想情况下,电阻消耗能量;电容、电感不消耗能量,只是转化能量。因为这种本质上的差异,数学上将电阻与电抗(电容/电感)用正交坐标系的二维坐标来表示,横坐标表示电阻,纵坐标表示电抗,特别的,正半轴表示电感感抗,负半轴表示电容容抗:

rlc阻抗计算公式_RLC并联电路阻抗表达式
图3-阻抗坐标系(复数体系下,横坐标电阻为实部,纵坐标电容、电感等电抗为虚部)

二维坐标系中,Z(阻抗)可以用复数表示,包含了模|Z|和角度θ两个信息。不过工程上,阻抗常指Z的模——|Z|,上图中已列举了计算公式。

角度θ隐含了电压U和电流I之间的相位信息:

  • 如果为正数,表示电压U在相位上领先于电流I;
  • 如果为负数,表示电流I在相位上领先于电压U。

这方面如果容易搞混,可以从源头去理解,电感的电流不能突变,先变化的是电压,呈现电感特性(XL>XC)的感性电路亦是如此;电容的电压不能突变,先变化的是电流,呈现电容特性(XC>XL)的容性电路亦是如此。


二、阻抗计算案例

下图中,RLC分别为10Ω、100μH、100μF;输入信号为50Hz,幅度峰值为10V;求电路阻抗、电流有效值?

rlc阻抗计算公式_RLC并联电路阻抗表达式
图4-阻抗计算案例
  • XL = 2π*fL = 2*3.14*50*100^10-6 = 0.03Ω
  • XC = 1/(2π*fC) = 1/(2*3.14*50*100^10-6) = 31.85Ω
  • X = XL-XC = -31.82Ω
  • |Z| = (10^2+31.82^2)^(1/2) = 33.35Ω
  • Irms = V(s-peak)*0.707/|Z| = 10*0.707/33.35 = 0.212A = 212mA

请注意,通过阻抗算电流或者电压都是基于RMS(有效值)的,所以幅度峰值10V的电源需要乘以0.707算出有效值。

因为是串联电路,所以Irms在所有元器件上一致,我们来分别计算一下电感、电容、电阻上的电压幅度峰值:

  • V(L-peak) = V(L-rms) / 0.707 = Irms*XL/0.707 = 0.212*0.03/0.707 = 0.01V
  • V(C-peak) = V(C-rms) / 0.707 = Irms*XC/0.707 = 0.212*31.85/0.707 = 9.55V
  • V(R-peak) = V(R-rms) / 0.707 = Irms*R/0.707 = 0.212*10/0.707 = 3V

可以看到,RLC三者的电压幅度峰值,如果全部加起来是大于电源电压的幅度峰值10V的,之所以这样,因为RLC各自的电压在相位上有差异,在某个具体的时间点(t)上此消彼长,所以加起来不会大于电源电压的幅度峰值10V。

我们来看下仿真波形,体会一下各个元器件上电压的此消彼长:

rlc阻抗计算公式_RLC并联电路阻抗表达式

图5-阻抗计算案例-电路仿真波形

三、当输入信号为谐振频率时会发生什么?

通过前文讲解,看到在计算电路阻抗的时候,会先求出XL(感抗)与XC(容抗)之差,得到电路的X(电抗)大小。

如果XL(感抗)=XC(容抗),那么电路的X(电抗)为0。要到达此目的意味着2π*fL = 1/(2π*fC),求得f = 1/(2π*(LC)^1/2):

rlc阻抗计算公式_RLC并联电路阻抗表达式
图6-谐振频率

这个频率称为“谐振频率”(Resonance frequency),是由电路中的L和C决定的。

当输入信号的频率与谐振频率一致时,电路的阻抗表现出纯电阻特性,而且|Z|最小。L、C两个元器件的组合对该频率的输入信号而言相当于是短路的。

回到图4中的案例,我们可以计算得到谐振频率约为1.592KHz,将其作为电源频率,看到仿真波形如下:

rlc阻抗计算公式_RLC并联电路阻抗表达式

图7-谐振频率-电路仿真波形

可以看到L、C上电压极性相互,相互抵消,所以L、C的组合相当于是短路的。对比一下图5,在谐振频率的情况下,电阻上获得了最大电压。

当然这是RLC作为串联电路的情况,当RLC作为并联电路时,以谐振频率作为输入,会发生什么呢?下面先给出结论,你可以想一下为什么。

rlc阻抗计算公式_RLC并联电路阻抗表达式
图8-RLC串联电路和并联电路,发生谐振频率时的等效电路(最小和最大阻抗)

(全文完)


今天的文章rlc阻抗计算公式_RLC并联电路阻抗表达式分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/85380.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注