目录
HDMI 介绍
HDMI,高清晰度多媒体接口(High Definition Multimedia Interface)是标准的数字化视频/音频接口技术,可用于机顶盒、DVD播放机、个人电脑与电视机。HDMI可以同时传送音频和影音信号,能高品质地传输未经压缩的高清视频和多声道音频数据,最高数据传输速度为 50Gbps 左右。
HDMI 引脚定义
常见的 HDMI 有19 根 pin,此外还有二十多跟 pin 脚的 HDMI 接口这里也只介绍此类常见的 HDMI接口,接口序号和定义如下:
引脚 |
信号 |
引脚 |
信号 |
1 |
数据2+ |
11 |
时钟屏蔽 |
2 |
数据2屏蔽 |
12 |
时钟- |
3 |
数据2- |
13 |
CEC |
4 |
数据1+ |
14 |
保留 |
5 |
数据1屏蔽 |
15 |
SCL |
6 |
数据1- |
16 |
SDA |
7 |
数据0+ |
17 |
DDC/CEC地 |
8 |
数据0屏蔽 |
18 |
+5v电源 |
9 |
数据0- |
19 |
热插拔检测 |
10 |
时钟+ |
TMDS 介绍
过渡调制差分信号,也被称为最小化传输差分信号,是指通过异或及异或非等逻辑算法将原始信号数据转换成 10 位,前 8 位数据由原始信号经运算后获得,第9位指示运算的方式,第 10 位用来对应直流平衡(DC-balanced,就是指在编码过程中保证信道中直流偏移为零,电平转化实现不同逻辑接口间的匹配),转换后的数据以差分传动方式传送。
下图为 HDMI 链路的框架图
TMDS 的链路如下图所示,可以看到链路主要有两部分:source 和 sink 端,source 端为传输数据的起始端,sink 端为传输数据的目的端。同时链路由四条通道组成,分别为蓝色通道、、绿色通道、红色通道和时钟通道。
蓝色通道
蓝色通道包含8位的蓝色数据通道,两位的行同步和场同步信号,以及四位的音频信号。
绿色通道
绿色通道包含8位的绿色数据通道,两位的控制信号,以及四位的音频信号。
红色通道
红色通道包含8位的红色数据通道,两位的控制信号,以及四位的音频信号。
时钟通道
为什么要导读设立一个时钟通道呢?这是为了使source端和sink端的数据保持在同一个pixel clock下,便于数据的稳定发送和接收。
在 source 端,每个通道的中还包含 Encoder 和 Serializer 模块,即编码模块和并转串模块,对应到 sink 端为解码模块和串转并模块。
在编码阶段,编码器将视频源中的像素数据、HDMI的音频/附件数据,以及行、场同步信号分别编码成10位的字符流。
在并串转换阶段将上述的10位字符流转换成串行数据流,并将其从三个差分输出通道发送出去。这个10:1的并转串过程所产生的串行速率是实际像素时钟速率的10倍。但是在并转串中采用的为DDR即双沿采样,因此时钟频率可以减小为原来的一半,也就是像素时钟的 5 倍。
编码模块
下图为 TMDS 的编码算法的流程示意图,每一个数据通道都通过编码算法,将 8 位的视、音频数据转换成最小化传输、直流平衡的 10 位数据。这使得数据的传输和恢复更加可靠。最小化传输差分信号是通过异或及异或非等逻辑算法将原始 8位信号数据转换成 10 位,前 8 为数据由原始信号经运算后获得,第 9 位指示运算的方式,第 10位用来对应直流平衡。这种算法可以减小传输信号过程的上冲和下冲,什么是上冲和下冲呢,顾名思义上冲就是由0转变为1,下冲就是由1转变为0,如果频繁的上下冲就会导致信号传输不稳定,而DC平衡使信号对传输线的电磁干扰减少,DC平衡指的是在码流中0和1的个数相当。总结来说,信号频繁的0、1变化和0和1数量不均衡都会影响信号的质量,编码的目的就在于此。
代码实现
这个编码代码可以直接调用Xilinx官网的,在例化此模块时,需要对每个通道分别进行例化。
//
//
// Xilinx, Inc. 2008 www.xilinx.com
//
//
//
// File name : encode.v
//
// Description : TMDS encoder
//
// Date - revision : Jan. 2008 - v 1.0
//
// Author : Bob Feng
//
// Disclaimer: LIMITED WARRANTY AND DISCLAMER. These designs are
// provided to you "as is". Xilinx and its licensors make and you
// receive no warranties or conditions, express, implied,
// statutory or otherwise, and Xilinx specifically disclaims any
// implied warranties of merchantability, non-infringement,or
// fitness for a particular purpose. Xilinx does not warrant that
// the functions contained in these designs will meet your
// requirements, or that the operation of these designs will be
// uninterrupted or error free, or that defects in the Designs
// will be corrected. Furthermore, Xilinx does not warrantor
// make any representations regarding use or the results of the
// use of the designs in terms of correctness, accuracy,
// reliability, or otherwise.
//
// LIMITATION OF LIABILITY. In no event will Xilinx or its
// licensors be liable for any loss of data, lost profits,cost
// or procurement of substitute goods or services, or for any
// special, incidental, consequential, or indirect damages
// arising from the use or operation of the designs or
// accompanying documentation, however caused and on any theory
// of liability. This limitation will apply even if Xilinx
// has been advised of the possibility of such damage. This
// limitation shall apply not-withstanding the failure of the
// essential purpose of any limited remedies herein.
//
// Copyright © 2006 Xilinx, Inc.
// All rights reserved
//
//
`timescale 1 ps / 1ps
module encode (
input clkin, // pixel clock input
input rstin, // async. reset input (active high)
input [7:0] din, // data inputs: expect registered
input c0, // c0 input
input c1, // c1 input
input de, // de input
output reg [9:0] dout // data outputs
);
// Counting number of 1s and 0s for each incoming pixel
// component. Pipe line the result.
// Register Data Input so it matches the pipe lined adder
// output
reg [3:0] n1d; //number of 1s in din
reg [7:0] din_q;
always @ (posedge clkin) begin
n1d <= din[0] + din[1] + din[2] + din[3] + din[4] + din[5] + din[6] + din[7];
din_q <= din;
end
///
// Stage 1: 8 bit -> 9 bit
// Refer to DVI 1.0 Specification, page 29, Figure 3-5
///
wire decision1;
assign decision1 = (n1d > 4'h4) | ((n1d == 4'h4) & (din_q[0] == 1'b0));
/*
reg [8:0] q_m;
always @ (posedge clkin) begin
q_m[0] <=#1 din_q[0];
q_m[1] <=#1 (decision1) ? (q_m[0] ^~ din_q[1]) : (q_m[0] ^ din_q[1]);
q_m[2] <=#1 (decision1) ? (q_m[1] ^~ din_q[2]) : (q_m[1] ^ din_q[2]);
q_m[3] <=#1 (decision1) ? (q_m[2] ^~ din_q[3]) : (q_m[2] ^ din_q[3]);
q_m[4] <=#1 (decision1) ? (q_m[3] ^~ din_q[4]) : (q_m[3] ^ din_q[4]);
q_m[5] <=#1 (decision1) ? (q_m[4] ^~ din_q[5]) : (q_m[4] ^ din_q[5]);
q_m[6] <=#1 (decision1) ? (q_m[5] ^~ din_q[6]) : (q_m[5] ^ din_q[6]);
q_m[7] <=#1 (decision1) ? (q_m[6] ^~ din_q[7]) : (q_m[6] ^ din_q[7]);
q_m[8] <=#1 (decision1) ? 1'b0 : 1'b1;
end
*/
wire [8:0] q_m;
assign q_m[0] = din_q[0];
assign q_m[1] = (decision1) ? (q_m[0] ^~ din_q[1]) : (q_m[0] ^ din_q[1]);
assign q_m[2] = (decision1) ? (q_m[1] ^~ din_q[2]) : (q_m[1] ^ din_q[2]);
assign q_m[3] = (decision1) ? (q_m[2] ^~ din_q[3]) : (q_m[2] ^ din_q[3]);
assign q_m[4] = (decision1) ? (q_m[3] ^~ din_q[4]) : (q_m[3] ^ din_q[4]);
assign q_m[5] = (decision1) ? (q_m[4] ^~ din_q[5]) : (q_m[4] ^ din_q[5]);
assign q_m[6] = (decision1) ? (q_m[5] ^~ din_q[6]) : (q_m[5] ^ din_q[6]);
assign q_m[7] = (decision1) ? (q_m[6] ^~ din_q[7]) : (q_m[6] ^ din_q[7]);
assign q_m[8] = (decision1) ? 1'b0 : 1'b1;
/
// Stage 2: 9 bit -> 10 bit
// Refer to DVI 1.0 Specification, page 29, Figure 3-5
/
reg [3:0] n1q_m, n0q_m; // number of 1s and 0s for q_m
always @ (posedge clkin) begin
n1q_m <= q_m[0] + q_m[1] + q_m[2] + q_m[3] + q_m[4] + q_m[5] + q_m[6] + q_m[7];
n0q_m <= 4'h8 - (q_m[0] + q_m[1] + q_m[2] + q_m[3] + q_m[4] + q_m[5] + q_m[6] + q_m[7]);
end
parameter CTRLTOKEN0 = 10'b1101010100;
parameter CTRLTOKEN1 = 10'b0010101011;
parameter CTRLTOKEN2 = 10'b0101010100;
parameter CTRLTOKEN3 = 10'b1010101011;
reg [4:0] cnt; //disparity counter, MSB is the sign bit
wire decision2, decision3;
assign decision2 = (cnt == 5'h0) | (n1q_m == n0q_m);
/
// [(cnt > 0) and (N1q_m > N0q_m)] or [(cnt < 0) and (N0q_m > N1q_m)]
/
assign decision3 = (~cnt[4] & (n1q_m > n0q_m)) | (cnt[4] & (n0q_m > n1q_m));
// pipe line alignment
reg de_q, de_reg;
reg c0_q, c1_q;
reg c0_reg, c1_reg;
reg [8:0] q_m_reg;
always @ (posedge clkin) begin
de_q <= de;
de_reg <= de_q;
c0_q <= c0;
c0_reg <= c0_q;
c1_q <= c1;
c1_reg <= c1_q;
q_m_reg <= q_m;
end
///
// 10-bit out
// disparity counter
///
always @ (posedge clkin or posedge rstin) begin
if(rstin) begin
dout <= 10'h0;
cnt <= 5'h0;
end else begin
if (de_reg) begin
if(decision2) begin
dout[9] <= ~q_m_reg[8];
dout[8] <= q_m_reg[8];
dout[7:0] <= (q_m_reg[8]) ? q_m_reg[7:0] : ~q_m_reg[7:0];
cnt <=#1 (~q_m_reg[8]) ? (cnt + n0q_m - n1q_m) : (cnt + n1q_m - n0q_m);
end else begin
if(decision3) begin
dout[9] <= 1'b1;
dout[8] <= q_m_reg[8];
dout[7:0] <= ~q_m_reg[7:0];
cnt <=#1 cnt + {q_m_reg[8], 1'b0} + (n0q_m - n1q_m);
end else begin
dout[9] <= 1'b0;
dout[8] <= q_m_reg[8];
dout[7:0] <= q_m_reg[7:0];
cnt <= cnt - {~q_m_reg[8], 1'b0} + (n1q_m - n0q_m);
end
end
end else begin
case ({c1_reg, c0_reg})
2'b00: dout <= CTRLTOKEN0;
2'b01: dout <= CTRLTOKEN1;
2'b10: dout <= CTRLTOKEN2;
default: dout <= CTRLTOKEN3;
endcase
cnt <= 5'h0;
end
end
end
endmodule
并转串模块
并串模块可以直接调用原语OSERDESE2,该原语可以将并行数据转为串行数据,支持的位宽为2-8、10、14,并且支持DDR还是SDR采样等模式配置,经过并转串原语出来的串行数据,由于TMDS的传输为差分信号,因此还需要将单端信号转变为差分信号,同样也可以借用原语实现,OBUFDS就可以实现这样的功能,将输出的单端信号转为差分信号。注意需要对每个通道进行例化。
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Author : Linest-5
// File : serial10_1.v
// Create : 2022-10-04 15:41:01
// Revise : 2022-10-04 17:07:13
// Module Name :
// Description :
// Editor : sublime text3, tab size (4)
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
module serial10_1(
input divclk, //并行时钟
input serclk, //串行时钟
input rst,
input [9:0] din,
output do_p,
output do_n
);
reg init_rst;
wire cascade_di1;
wire cascade_di2;
wire dout;
always @(posedge divclk or posedge rst) begin
if (rst) begin
init_rst <= 'd1;
end
else begin
init_rst <= 'd0;
end
end
OBUFDS #(
.IOSTANDARD("DEFAULT"), // Specify the output I/O standard
.SLEW("SLOW") // Specify the output slew rate
) OBUFDS_inst (
.O(do_p), // Diff_p output (connect directly to top-level port)
.OB(do_n), // Diff_n output (connect directly to top-level port)
.I(dout) // Buffer input
);
OSERDESE2 #(
.DATA_RATE_OQ("DDR"), // DDR, SDR
.DATA_RATE_TQ("SDR"), // DDR, BUF, SDR 控制OQ输出的buffer是输出还是三态
.DATA_WIDTH(10), // Parallel data width (2-8,10,14)
.INIT_OQ(1'b0), // Initial value of OQ output (1'b0,1'b1)
.INIT_TQ(1'b0), // Initial value of TQ output (1'b0,1'b1)
.SERDES_MODE("MASTER"), // MASTER, SLAVE
.SRVAL_OQ(1'b0), // OQ output value when SR is used (1'b0,1'b1)
.SRVAL_TQ(1'b0), // TQ output value when SR is used (1'b0,1'b1)
.TBYTE_CTL("FALSE"), // Enable tristate byte operation (FALSE, TRUE)
.TBYTE_SRC("FALSE"), // Tristate byte source (FALSE, TRUE)
.TRISTATE_WIDTH(1) // 3-state converter width (1,4)
)
OSERDESE2_inst_M (
.OFB(), // 1-bit output: Feedback path for data
.OQ(dout), // 1-bit output: Data path output
// SHIFTOUT1 / SHIFTOUT2: 1-bit (each) output: Data output expansion (1-bit each)
.SHIFTOUT1(),
.SHIFTOUT2(),
.TBYTEOUT(), // 1-bit output: Byte group tristate
.TFB(), // 1-bit output: 3-state control
.TQ(), // 1-bit output: 3-state control
.CLK(serclk), // 1-bit input: High speed clock
.CLKDIV(divclk), // 1-bit input: Divided clock
// D1 - D8: 1-bit (each) input: Parallel data inputs (1-bit each)
.D1(din[0]),
.D2(din[1]),
.D3(din[2]),
.D4(din[3]),
.D5(din[4]),
.D6(din[5]),
.D7(din[6]),
.D8(din[7]),
.OCE(1'b1), // 1-bit input: Output data clock enable
.RST(init_rst), // 1-bit input: Reset
// SHIFTIN1 / SHIFTIN2: 1-bit (each) input: Data input expansion (1-bit each)
.SHIFTIN1(cascade_di1),
.SHIFTIN2(cascade_di2),
// T1 - T4: 1-bit (each) input: Parallel 3-state inputs
.T1(0),
.T2(0),
.T3(0),
.T4(0),
.TBYTEIN(0), // 1-bit input: Byte group tristate
.TCE(0) // 1-bit input: 3-state clock enable
);
OSERDESE2 #(
.DATA_RATE_OQ("DDR"), // DDR, SDR
.DATA_RATE_TQ("SDR"), // DDR, BUF, SDR 控制OQ输出的buffer是输出还是三态
.DATA_WIDTH(10), // Parallel data width (2-8,10,14)
.INIT_OQ(1'b0), // Initial value of OQ output (1'b0,1'b1)
.INIT_TQ(1'b0), // Initial value of TQ output (1'b0,1'b1)
.SERDES_MODE("SLAVE"), // MASTER, SLAVE
.SRVAL_OQ(1'b0), // OQ output value when SR is used (1'b0,1'b1)
.SRVAL_TQ(1'b0), // TQ output value when SR is used (1'b0,1'b1)
.TBYTE_CTL("FALSE"), // Enable tristate byte operation (FALSE, TRUE)
.TBYTE_SRC("FALSE"), // Tristate byte source (FALSE, TRUE)
.TRISTATE_WIDTH(1) // 3-state converter width (1,4)
)
OSERDESE2_inst_S (
.OFB(), // 1-bit output: Feedback path for data
.OQ(), // 1-bit output: Data path output
// SHIFTOUT1 / SHIFTOUT2: 1-bit (each) output: Data output expansion (1-bit each)
.SHIFTOUT1(cascade_di1),
.SHIFTOUT2(cascade_di2),
.TBYTEOUT(), // 1-bit output: Byte group tristate
.TFB(), // 1-bit output: 3-state control
.TQ(), // 1-bit output: 3-state control
.CLK(serclk), // 1-bit input: High speed clock
.CLKDIV(divclk), // 1-bit input: Divided clock
// D1 - D8: 1-bit (each) input: Parallel data inputs (1-bit each)
.D1(),
.D2(),
.D3(din[8]),
.D4(din[9]),
.D5(0),
.D6(0),
.D7(0),
.D8(0),
.OCE(1'b1), // 1-bit input: Output data clock enable
.RST(init_rst), // 1-bit input: Reset
// SHIFTIN1 / SHIFTIN2: 1-bit (each) input: Data input expansion (1-bit each)
.SHIFTIN1(),
.SHIFTIN2(),
// T1 - T4: 1-bit (each) input: Parallel 3-state inputs
.T1(0),
.T2(0),
.T3(0),
.T4(0),
.TBYTEIN(0), // 1-bit input: Byte group tristate
.TCE(0) // 1-bit input: 3-state clock enable
);
endmodule
视频时序标准
这部分在 VGA 中讲过,不多叙述,可以在VESA查询不同分辨率和帧数所对应的参数
VGA的时序驱动代码也在VGA中有,不同分辨率的参数设定都已经参数化,根据不同的情况更改参数即可。
以下为 VGA 驱动设计系列博客直达链接。
【接口协议】FPGA 驱动 VGA 显示实验(一)原理部分
【接口协议】FPGA 驱动 VGA 显示实验(二)实验设计部分
传输通道顶层
在次顶层模块对编码模块和并转串模块进行例化,需要对每个通道都进行例化一遍。
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Author : Linest-5
// File : hdmi_trans.v
// Create : 2022-10-04 16:39:39
// Revise : 2022-10-04 16:57:56
// Module Name :
// Description :
// Editor : sublime text3, tab size (4)
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
module hdmi_trans(
input clk1x,
input clk5x,
input rst,
input locked,
input [7:0] vga_r,
input [7:0] vga_g,
input [7:0] vga_b,
input de,
input v_sync,
input h_sync,
output hdmi_clk_p,
output hdmi_clk_n,
output hdmi_chan0_p,
output hdmi_chan0_n,
output hdmi_chan1_p,
output hdmi_chan1_n,
output hdmi_chan2_p,
output hdmi_chan2_n
);
wire sysrst;
wire [9:0] do_red;
wire [9:0] do_green;
wire [9:0] do_blue;
assign sysrst = rst | (~locked);
encode inst_encode_red (
.clkin (clk1x),
.rstin (sysrst),
.din (vga_r),
.c0 (1'b0),
.c1 (1'b0),
.de (de),
.dout (do_red)
);
encode inst_encode_green (
.clkin (clk1x),
.rstin (sysrst),
.din (vga_g),
.c0 (1'b0),
.c1 (1'b0),
.de (de),
.dout (do_green)
);
encode inst_encode_blue (
.clkin (clk1x),
.rstin (sysrst),
.din (vga_b),
.c0 (h_sync),
.c1 (v_sync),
.de (de),
.dout (do_blue)
);
serial10_1 inst_serial10_1_clk(
.divclk (clk1x),
.serclk (clk5x),
.rst (sysrst),
.din (10'b1111_0000),
.do_p (hdmi_clk_p),
.do_n (hdmi_clk_n)
);
serial10_1 inst_serial10_1_red(
.divclk (clk1x),
.serclk (clk5x),
.rst (sysrst),
.din (do_red),
.do_p (hdmi_chan2_p),
.do_n (hdmi_chan2_n)
);
serial10_1 inst_serial10_1_green(
.divclk (clk1x),
.serclk (clk5x),
.rst (sysrst),
.din (do_green),
.do_p (hdmi_chan1_p),
.do_n (hdmi_chan1_n)
);
serial10_1 inst_serial10_1_blue(
.divclk (clk1x),
.serclk (clk5x),
.rst (sysrst),
.din (do_blue),
.do_p (hdmi_chan0_p),
.do_n (hdmi_chan0_n)
);
endmodule
顶层模块
最后进行最顶层模块的书写,将通带次顶层模块和VGA时序模块及逆行例化,同时由于我使用的板子输入时钟为200M的差分时钟,所以还需要例化锁相环模块。
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Author : Linest-5
// File : hdmi_top.v
// Create : 2022-10-04 20:54:00
// Revise : 2022-10-04 21:16:21
// Module Name :
// Description :
// Editor : sublime text3, tab size (4)
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
`timescale 1ns / 1ps
module hdmi_top(
input clk_p,
input clk_n,
output hdmi_clk_p,
output hdmi_clk_n,
output hdmi_chan0_p,
output hdmi_chan0_n,
output hdmi_chan1_p,
output hdmi_chan1_n,
output hdmi_chan2_p,
output hdmi_chan2_n
);
wire clk1x;
wire clk5x;
wire locked;
wire [7:0] vga_r;
wire [7:0] vga_g;
wire [7:0] vga_b;
wire de;
wire v_sync;
wire h_sync;
diff2single inst_diff2single(
// Clock out ports
.clk_out1(clk1x), // output clk_out1
.clk_out2(clk5x), // output clk_out2
// Status and control signals
.locked(locked), // output locked
// Clock in ports
.clk_in1_p(clk_p), // input clk_in1_p
.clk_in1_n(clk_n)); // input clk_in1_n
hdmi_trans inst_hdmi_trans (
.clk1x (clk1x),
.clk5x (clk5x),
.rst (0),
.locked (locked),
.vga_r (vga_r),
.vga_g (vga_g),
.vga_b (vga_b),
.de (de),
.v_sync (v_sync),
.h_sync (h_sync),
.hdmi_clk_p (hdmi_clk_p),
.hdmi_clk_n (hdmi_clk_n),
.hdmi_chan0_p (hdmi_chan0_p),
.hdmi_chan0_n (hdmi_chan0_n),
.hdmi_chan1_p (hdmi_chan1_p),
.hdmi_chan1_n (hdmi_chan1_n),
.hdmi_chan2_p (hdmi_chan2_p),
.hdmi_chan2_n (hdmi_chan2_n)
);
VGA_TIMING inst_VGA_TIMING (
.sclk (clk1x),
.rst_n (locked),
.po_vga_r (vga_r),
.po_vga_g (vga_g),
.po_vga_b (vga_b),
.po_de (de),
.po_v_sync (v_sync),
.po_h_sync (h_sync)
);
endmodule
工程搭建
在 Vivado 对工程进行搭建,将几个文件导入,并添加相应的 IP 模块即可。
以下为实验工程的模块间框图
最后绑定管脚并生成比特流文件,烧录至FPGA中,将HDMI输出口接到带有HDMI口的显示器,就可以看到在显示屏上呈现彩条。
今天的文章fpga实现hdmi接口_接口协议有哪些分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/86606.html