四元一次方程组的解法_解方程组的软件

四元一次方程组的解法_解方程组的软件提示:以上算法均返回实数解,且去掉了重根

这篇文章主要介绍了四元一次方程组怎么解线性代数,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。

四元一次方程组的解法_解方程组的软件


一、一元四次方程求根算法

天珩公式:https://baike.baidu.com/item/%E4%B8%80%E5%85%83%E5%9B%9B%E6%AC%A1%E6%96%B9%E7%A8%8B%E6%B1%82%E6%A0%B9%E5%85%AC%E5%BC%8F/10721996?fr=aladdin

代码如下(示例):

/**
 * 沈天珩简化四次方求根公式算法。
 * 返回根的数组,数组长度: 0 - 4
 * @param {*} param0 a,b,c,d 分别为四、三、二、一次项系数;e为常数项
 * @returns {Number[]}
 */
function cal_quartic_ik ([a, b, c, d, e]){
    let a_Quadruple = 4 * a;
    let D = 3 * pow(b, 2) - 8 * a * c,
        E = - pow(b, 3) + a_Quadruple * b * c - 8 * pow(a, 2) * d,
        F = 3 * pow(b, 4) + 16 * pow(a, 2) * pow(c, 2) - 16 * a * pow(b, 2) * c + 16 * pow(a, 2) * b * d - 64 * pow(a, 3) * e;
 
    let A = D ** 2 - 3 * F,
        B = D * F - 9 * pow(E, 2),
        C = F ** 2 - 3 * D * pow(E, 2);
    let delta = B ** 2 - 4 * A * C; //总判别式

     //四重实根
    if (isZero(D) && isZero(E) && isZero(F)) return [-b / a_Quadruple]
    

    //两个实根,其中一个三重实根
    if (isZero(A) && isZero(B) && isZero(C) && !isZero(D * E * F)) {
        
        let m = a_Quadruple * D, n = -b * D;
        return [(n + 9 * E) / m, (n - 3 * E) / m]

    }
    
    //一对二重根,有可能没有根
    if (isZero(E) && isZero(F) && !isZero(D)) {
        
        
        if (D > 0) return [(-b + sqrt(D)) / a_Quadruple, (-b - sqrt(D)) / a_Quadruple]
        
        if (D < 0) return []
        
    }
       
    //四个根
    if (!isZero(A * B * C) && isZero(delta)) {
        
        let temp = sign(A * B * E) * sqrt(D - B / A),
            sqrt_BA = sqrt(2 * B / A);

        //其余两根为不等实根,四个实根 
        if (A * B > 0)          
            return [
                (-b + temp + sqrt_BA) / a_Quadruple, 
                (-b + temp - sqrt_BA) / a_Quadruple, 
                (-b - temp) / a_Quadruple
            ]
        
        //其余两根为共轭虚根
        if (A * B < 0) return [(-b - temp) / a_Quadruple]
        
    }

    //两个不等实根和一对共轭虚根
    if (delta > 0) {
        
        let z1 = A * D + 3 * ((-B + sqrt(delta)) / 2.0);
        let z2 = A * D + 3 * ((-B - sqrt(delta)) / 2.0);

        let z = D ** 2 - D * (sign(z1) * pow(abs(z1), One_third) + sign(z2) * pow(abs(z2), One_third)) + 
                (sign(z1) * pow(abs(z1), One_third) + sign(z2) * pow(abs(z2), One_third)) ** 2 - 3 * A,
            m = (-b + sign(E) * sqrt((D + sign(z1) * pow(abs(z1), One_third) + sign(z2) * pow(abs(z2), One_third)) / 3.0)),
            n = sqrt((2 * D - sign(z1) * pow(abs(z1), One_third) - sign(z2) * pow(abs(z2), One_third) + 2 * sqrt(z)) / 3.0);

        return [(m + n) / a_Quadruple, (m - n) / a_Quadruple]
    }
        
    if (delta < 0) {
        
        if (!(D > 0) && (F > 0))  return []

        //四个不等实根
        if (isZero(E)) {
            
            let sqrt_F_two = 2 * sqrt(F);
            return [
                (-b + sqrt(D + sqrt_F_two)) / a_Quadruple,
                (-b - sqrt(D + sqrt_F_two)) / a_Quadruple,
                (-b + sqrt(D - sqrt_F_two)) / a_Quadruple, 
                (-b - sqrt(D - sqrt_F_two)) / a_Quadruple
            ]
        }
            

        //四个不等实根
        let sqrt_A = sqrt(A);
        let theta_one_third = acos((3 * B - 2 * A * D) / (2 * A * sqrt_A)) / 3.0,
            y1 = (D - 2 * sqrt_A * cos(theta_one_third)) / 3.0,
            y2 = (D + sqrt_A * (cos(theta_one_third) + sqrt(3) * sin(theta_one_third))) / 3.0,
            y3 = (D + sqrt_A * (cos(theta_one_third) - sqrt(3) * sin(theta_one_third))) / 3.0,
            y4 = sign(E) * sqrt(y1);

        return [
            (-b + y4 + (sqrt(y2) + sqrt(y3))) / a_Quadruple,
            (-b + y4 - (sqrt(y2) + sqrt(y3))) / a_Quadruple,
            (-b - y4 + (sqrt(y2) - sqrt(y3))) / a_Quadruple,
            (-b - y4 - (sqrt(y2) - sqrt(y3))) / a_Quadruple
        ]       
    }

    return []
}

二、一元三次方程求根算法

盛金公式:https://baike.baidu.com/item/%E7%9B%9B%E9%87%91%E5%85%AC%E5%BC%8F#9

/**
 * 三次方求根公式算法python for语句用法。
 * 返回根的数组,数组长度: 0 - 3
 * @param {*} param0 a,b,c 分别为三、二、一次项系数;d为常数项
 * @returns {Number[]}
 */
function cal_cubic_ik([a, b, c, d]){
 
    let a_Threefold = 3 * a;
    let A = b ** 2 - a_Threefold * c,
        B = b * c - 9 * a * d,
        C = c ** 2 - 3 * b * d,
        delta = B ** 2 - 4 * A * C;  //总判别式
    
    // 一个三重实根
    if (isZero(A) && isZero(B)){
        
        return [-b / (a_Threefold)]
    }

    // 一个实根和一对共轭复根
    if (delta > 0){
        
        let y1 = A * b + a_Threefold * (( -B + sqrt(delta)) / 2.0),   
            y2 = A * b + a_Threefold * (( -B - sqrt(delta)) / 2.0);

        return [(-b - (sign(y1) * pow(abs(y1), One_third) + sign(y2) * pow(abs(y2), One_third)) ) / a_Threefold ]
    }

    //三个实根,其中有一个二重根
    if (isZero(delta)){
        
        let K = B / float(A);
        return [- b / float(a) + K, - K / 2.0]
    }

    //三个不等实根
    if (delta < 0){
        
        let theta = acos((2 * A * b - 3 * a * B) / (2 * sqrt(pow(A, 3))));
            m = sqrt(A),
            n = cos(theta / 3.0),
            q = sqrt(3) * sin(theta / 3.0);

        return [
            (- b - 2 * m * n) / a_Threefold, 
            (- b + m * (n + q)) / a_Threefold, 
            (- b + m * (n - q)) / a_Threefold
        ]

    }
}

总结

提示:以上算法均返回实数解,且去掉了重根。
需导入的头文件

const {pow, sqrt, sign, abs, sin, cos, acos} = Math;
const One_third = 1.0 / 3.0;

function isZero (value, ep = EP) {
     return Math.abs(value) < ep;
}

今天的文章四元一次方程组的解法_解方程组的软件分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/86907.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注