【FinE】Ito Integral习题(1)「建议收藏」

【FinE】Ito Integral习题(1)「建议收藏」金融随机分析系列,伊藤积分习题_ito引理推导计算d(lnst)

【FinE】Ito Integral习题(1)「建议收藏」

习题

Q1:几何布朗运动(GBM)的期望

题面
计算GBM的数学期望
解析
在概率测度 P \mathbb{P} P下,GBM方程为
d S t = μ S t d t + σ S t d w t P dS_t=\mu S_tdt+\sigma S_t dw_t^\mathbb{P} dSt=μStdt+σStdwtP
在概率测度 Q \mathbb{Q} Q下,GBM方程为
d S t = r S t d t + σ S t d w t Q dS_t=rS_tdt+\sigma S_tdw_t^\mathbb{Q} dSt=rStdt+σStdwtQ
P \mathbb{P} P测度下,令 f ( t , x ) = ln ⁡ x , f t = 0 , f x = 1 x , f x x = − 1 x 2 f(t, x)=\ln x, f_t=0, f_x=\frac{1}{x}, f_{xx}=\frac{-1}{x^2} f(t,x)=lnx,ft=0,fx=x1,fxx=x21,根据Ito Formula计算
d ln ⁡ S t = 1 S t d S t − 1 2 1 S t 2 d t d\ln S_t=\frac{1}{S_t}dS_t-\frac{1}{2}\frac{1}{S_t^2}dt dlnSt=St1dSt21St21dt
代入 d S t = μ S t d t + σ S t d w t P dS_t=\mu S_tdt+\sigma S_tdw_t^\mathbb{P} dSt=μStdt+σStdwtP,可得
d ln ⁡ S t = μ d t + σ d w t P − 1 2 S t 2 σ 2 S t 2 d t = ( μ − 1 2 σ 2 ) d t + σ d w t P \begin{aligned} d\ln S_t&=\mu dt+\sigma dw_t^\mathbb{P}-\frac{1}{2S_t^2}\sigma^2S_t^2dt \\ &=(\mu-\frac{1}{2}\sigma^2)dt+\sigma dw_t^\mathbb{P} \end{aligned} dlnSt=μdt+σdwtP2St21σ2St2dt=(μ21σ2)dt+σdwtP
两边同时积分可得
ln ⁡ S t − ln ⁡ S 0 = ∫ 0 t ( μ − 1 2 σ 2 ) d s + σ d w s P = ( μ − 1 2 σ 2 ) t + σ w t P \begin{aligned} \ln S_t-\ln S_0&=\int_0^t(\mu-\frac{1}{2}\sigma^2)ds+\sigma dw_s^\mathbb{P}\\ &=(\mu-\frac{1}{2}\sigma^2)t+\sigma w_t^\mathbb{P} \end{aligned} lnStlnS0=0t(μ21σ2)ds+σdwsP=(μ21σ2)t+σwtP
得到 S t S_t St表达式
S t = S 0 exp ⁡ [ ( μ − 1 2 σ 2 ) t + σ w t P ] S_t=S_0\exp[(\mu-\frac{1}{2}\sigma^2)t+\sigma w_t^\mathbb{P}] St=S0exp[(μ21σ2)t+σwtP]
计算期望
E [ S t ] = S 0 exp ⁡ [ ( μ − 1 2 σ 2 ) t ] × E [ exp ⁡ [ σ w t P ] ] \mathbb{E}[S_t]=S_0\exp[(\mu-\frac{1}{2}\sigma^2)t]\times \mathbb{E}[\exp[\sigma w_t^\mathbb{P}]] E[St]=S0exp[(μ21σ2)t]×E[exp[σwtP]]
其中 w t P ∼ N ( 0 , t ) w_t^\mathbb{P}\sim \mathcal{N}(0, t) wtPN(0,t),计算 E [ exp ⁡ [ σ w t P ] ] \mathbb{E}[\exp[\sigma w_t^\mathbb{P}]] E[exp[σwtP]]
E [ exp ⁡ [ σ w t P ] ] = ∫ − ∞ ∞ e σ x 1 2 π t e − x 2 2 t d x = 1 2 π t ∫ − ∞ ∞ e − ( x − σ t ) 2 2 t d x ⏟ N ( σ t , t ) × e σ 2 t 2 = e σ 2 t 2 \begin{aligned} \mathbb{E}[\exp[\sigma w_t^\mathbb{P}]]&=\int_{-\infty}^\infty e^{\sigma x}\frac{1}{\sqrt{2\pi t}}e^{\frac{-x^2}{2t}}dx\\ &=\underbrace{\frac{1}{\sqrt{2\pi t}}\int_{-\infty}^\infty e^{-\frac{(x-\sigma t)^2}{2t}}dx }_{\mathcal{N}(\sigma t, t)}\times e^{\frac{\sigma^2t}{2}}\\ &=e^{\frac{\sigma^2t}{2}} \end{aligned} E[exp[σwtP]]=eσx2πt
1
e2tx2dx
=N(σt,t)


2πt
1
e2t(xσt)2dx
×e2σ2t
=e2σ2t

所以
E [ S t ] = S 0 e μ t \mathbb{E}[S_t]=S_0e^{\mu t} E[St]=S0eμt

Q2:欧式看涨期权与BSM公式

题面
对于欧式看涨期权 c ( t , x ) c(t, x) c(t,x),到期时间为 T T T,行权价格是 K K K,BS公式计算在时刻 t t t,如果股票价格为 x x x,期权价格为
c ( t , x ) = x N ( d + ) − K e − r ( T − t ) N ( d − ) c(t, x)=xN(d_+)-Ke^{-r(T-t)}N(d_-) c(t,x)=xN(d+)Ker(Tt)N(d)
其中
d + = ln ⁡ ( x K ) + ( r + 1 2 σ 2 ) ( T − t ) σ T − t d − = ln ⁡ x K + ( r − 1 2 σ 2 ) ( T − t ) σ T − t d_+=\frac{\ln(\frac{x}{K})+(r+\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}\\ d_-=\frac{\ln\frac{x}{K}+(r-\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}} d+=σTt
ln(Kx)+(r+21σ2)(Tt)
d=σTt
lnKx+(r21σ2)(Tt)

期权价格 c ( t , x ) c(t, x) c(t,x)满足BSM偏微分方程
c t ( t , x ) + r x c x ( t , x ) + 1 2 σ 2 x 2 c x x ( t , x ) = r c ( t , x ) , 0 ≤ t ≤ T , x > 0 c_t(t, x)+rxc_x(t, x)+\frac{1}{2}\sigma^2x^2c_{xx}(t, x)=rc(t, x), 0\leq t\leq T, x>0 ct(t,x)+rxcx(t,x)+21σ2x2cxx(t,x)=rc(t,x),0tT,x>0
终值条件
lim ⁡ t → T c ( t , x ) = max ⁡ { x − K , 0 } , x > 0 , x ≠ K \lim_{t\to T}c(t, x)=\max\{x-K, 0\}, x>0, x\neq K tTlimc(t,x)=max{
x
K,0},x>0,x=K

边界条件
( 1 ) lim ⁡ x → 0 c ( t , x ) = 0 ( 2 ) lim ⁡ x → ∞ [ c ( t , x ) − ( x − e − r ( T − t ) K ) ] = 0 , 0 ≤ t ≤ K \begin{aligned} &(1) \quad \lim_{x\to 0} c(t, x)=0\\ &(2) \quad \lim_{x\to\infty}[c(t, x)-(x-e^{-r(T-t)}K)]=0, 0\leq t\leq K \end{aligned} (1)x0limc(t,x)=0(2)xlim[c(t,x)(xer(Tt)K)]=0,0tK
(1) 证明方程成立
K e − r ( T − t ) N ′ ( d − ) = x N ′ ( d + ) Ke^{-r(T-t)}N'(d_-)=xN'(d_+) Ker(Tt)N(d)=xN(d+)
解析
移项方程,可知
K e − r ( T − t ) = x N ′ ( d + ) N ′ ( d − ) Ke^{-r(T-t)}=x\frac{N'(d_+)}{N'(d_-)} Ker(Tt)=xN(d)N(d+)
代入
N ′ ( x ) = ( ∫ − ∞ x 1 2 π e − s 2 2 d s ) ′ = 1 2 π e − x 2 2 N'(x)=(\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}e^{-\frac{s^2}{2}}ds)’=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} N(x)=(x2π
1
e2s2ds)=
2π
1
e2x2

得到
K e − r ( T − t ) = x e − d + 2 2 e − d − 2 2 = x e d − 2 − d + 2 2 ⇔ x K e r ( T − t ) = e d + 2 − d − 2 2 \begin{aligned} &Ke^{-r(T-t)}=x\frac{e^{-\frac{d_+^2}{2}}}{e^{-\frac{d_-^2}{2}}}=xe^{\frac{d_-^2-d_+^2}{2}}\\ &\Leftrightarrow \frac{x}{K}e^{r(T-t)}=e^{\frac{d_+^2-d_-^2}{2}} \end{aligned} Ker(Tt)=xe2d2e2d+2=xe2d2d+2Kxer(Tt)=e2d+2d2
可以计算出
d + 2 − d − 2 = [ ln ⁡ ( x K ) + ( r + 1 2 σ 2 ) ( T − t ) ] 2 − [ ln ⁡ ( x K ) + ( r − 1 2 σ 2 ) ( T − t ) ] 2 σ 2 ( T − t ) = [ 4 ∗ ( ln ⁡ ( x K ) + r ( T − t ) ) ] ∗ 1 2 σ 2 ( T − t ) σ 2 ( T − t ) = 2 ∗ ( ln ⁡ ( x K ) + r ( T − t ) ) \begin{aligned} d_+^2-d_-^2&=\frac{[\ln(\frac{x}{K})+(r+\frac{1}{2}\sigma^2)(T-t)]^2-[\ln(\frac{x}{K})+(r-\frac{1}{2}\sigma^2)(T-t)]^2}{\sigma^2(T-t)}\\ &=\frac{[4*(\ln(\frac{x}{K})+r(T-t))]*\frac{1}{2}\sigma^2(T-t)}{\sigma^2(T-t)}\\ &=2*(\ln(\frac{x}{K})+r(T-t)) \end{aligned} d+2d2=σ2(Tt)[ln(Kx)+(r+21σ2)(Tt)]2[ln(Kx)+(r21σ2)(Tt)]2=σ2(Tt)[4(ln(Kx)+r(Tt))]21σ2(Tt)=2(ln(Kx)+r(Tt))
计算方程R.H.S
e d − 2 − d + 2 2 = e ln ⁡ ( x K ) + r ( T − t ) = x K e r ( T − t ) e^{\frac{d_-^2-d_+^2}{2}}=e^{\ln(\frac{x}{K})+r(T-t)}=\frac{x}{K}e^{r(T-t)} e2d2d+2=eln(Kx)+r(Tt)=Kxer(Tt)
和方程L.H.S相同. □ \hspace{5cm}\square

(2) 证明欧式看涨期权的 Δ = c x ( t , x ) = N ( d + ) \Delta=c_x(t, x)=N(d_+) Δ=cx(t,x)=N(d+)
解析
复合函数求导得
c x ( t , x ) = N ( d + ) + x N ′ ( d + ) ∂ d + ∂ x − K e − r ( T − t ) N ′ ( d − ) ∂ d − ∂ x c_x(t, x)=N(d_+)+xN'(d_+)\frac{\partial d_+}{\partial x}-Ke^{-r(T-t)}N'(d_-)\frac{\partial d_-}{\partial x} cx(t,x)=N(d+)+xN(d+)xd+Ker(Tt)N(d)xd
计算偏导数部分
∂ d + ∂ x = ∂ d − ∂ x = ∂ ∂ x [ ln ⁡ ( x K ) σ T − t ] = 1 σ x T − t \frac{\partial d_+}{\partial x}=\frac{\partial d_-}{\partial x}=\frac{\partial}{\partial x}[\frac{\ln(\frac{x}{K})}{\sigma\sqrt{T-t}}]=\frac{1}{\sigma x\sqrt{T-t}} xd+=xd=x[σTt
ln(Kx)
]=
σxTt
1

代入 c x ( t , x ) c_x(t, x) cx(t,x)得到
c x ( t , x ) = N ( d + ) + ( x N ′ ( d + ) − K e − r ( T − t ) N ′ ( d − ) ) 1 σ x T − t c_x(t, x)=N(d_+)+(xN'(d_+)-Ke^{-r(T-t)}N'(d_-))\frac{1}{\sigma x\sqrt{T-t}} cx(t,x)=N(d+)+(xN(d+)Ker(Tt)N(d))σxTt
1

有(1)中结果可知
c x ( t , x ) = N ( d + ) c_x(t, x)=N(d_+) cx(t,x)=N(d+)
所以 Δ = c x ( t , x ) = N ( d + ) \Delta=c_x(t, x)=N(d_+) Δ=cx(t,x)=N(d+)成立. □ \hspace{5cm}\square

(3) 证明欧式看涨期权的 Θ \Theta Θ
c t ( t , x ) = − r e − r ( T − t ) N ( d − ) − σ x 2 T − t N ′ ( d + ) c_t(t, x)=-re^{-r(T-t)}N(d_-)-\frac{\sigma x}{2\sqrt{T-t}}N'(d_+) ct(t,x)=rer(Tt)N(d)2Tt
σx
N(d+)

解析
根据(3)中的结果,可以预处理 Γ = c x x ( t , x ) \Gamma=c_{xx}(t, x) Γ=cxx(t,x)
Γ = c x x ( t , x ) = ∂ ∂ x ( N ( d + ) ) = N ′ ( d + ) ∂ d + ∂ x = N ′ ( d + ) σ x T − t \Gamma=c_{xx}(t, x)=\frac{\partial}{\partial x}(N(d_+))=N'(d_+)\frac{\partial d_+}{\partial x}=\frac{N'(d_+)}{\sigma x\sqrt{T-t}} Γ=cxx(t,x)=x(N(d+))=N(d+)xd+=σxTt
N(d+)

计算
∂ ∂ t N ( d + ) = N ′ ( d + ) ∂ d + ∂ t = N ′ ( d + ) 1 σ 2 ( T − t ) [ − 1 2 ( r + 1 2 σ 2 ) σ T − t + ln ⁡ ( x / K ) σ 2 T − t ] = N ′ ( d + ) 2 σ T − t [ ln ⁡ ( x / K ) T − t − ( r + 1 2 σ 2 ) ] ∂ ∂ t N ( d − ) = N ′ ( d − ) 2 σ T − t [ ln ⁡ ( x / K ) T − t − ( r − 1 2 σ 2 ) ] (3.1) \begin{aligned} \frac{\partial}{\partial t}N(d_+)&=N'(d_+)\frac{\partial d_+}{\partial t}\\ &=N'(d_+)\frac{1}{\sigma^2(T-t)}[-\frac{1}{2}(r+\frac{1}{2}\sigma^2)\sigma\sqrt{T-t}+\ln(x/K)\frac{\sigma}{2\sqrt{T-t}}]\\ &=\frac{N'(d_+)}{2\sigma\sqrt{T-t}}[\frac{\ln(x/K)}{T-t}-(r+\frac{1}{2}\sigma^2)]\\ \frac{\partial}{\partial t}N(d_-)&=\frac{N'(d_-)}{2\sigma\sqrt{T-t}}[\frac{\ln(x/K)}{T-t}-(r-\frac{1}{2}\sigma^2)] \end{aligned}\tag{3.1} tN(d+)tN(d)=N(d+)td+=N(d+)σ2(Tt)1[21(r+21σ2)σTt
+ln(x/K)2Tt
σ
]
=2σTt
N(d+)
[Ttln(x/K)(r+21σ2)]
=2σTt
N(d)
[Ttln(x/K)(r21σ2)]
(3.1)

计算 c ( t , x ) c(t, x) c(t,x) t t t的偏导数,代入方程 ( 3.1 ) (3.1) (3.1)中的结果
c t ( t , x ) = ∂ ∂ t [ x N ( d + ) − K e − r ( T − t ) N ( d − ) ] = − x N ′ ( d + ) 2 σ T − t σ 2 − K r e − r ( T − t ) N ( d − ) = − σ x N ′ ( d + ) 2 T − t − K r e − r ( T − t ) N ( d − ) \begin{aligned} c_t(t, x)&=\frac{\partial}{\partial t}[xN(d_+)-Ke^{-r(T-t)}N(d_-)]\\ &=-\frac{xN'(d_+)}{2\sigma\sqrt{T-t}}\sigma^2-Kre^{-r(T-t)}N(d_-)\\ &=-\frac{\sigma xN'(d_+)}{2\sqrt{T-t}}-Kre^{-r(T-t)}N(d_-) \end{aligned} ct(t,x)=t[xN(d+)Ker(Tt)N(d)]=2σTt
xN(d+)
σ2Krer(Tt)N(d)
=2Tt
σxN(d+)
Krer(Tt)N(d)

Θ \Theta Θ方程成立. □ \hspace{5cm}\square

(4) 使用(1), (2), (3)中的结果证明 c ( t , x ) c(t, x) c(t,x)满足BSM偏微分方程
解析
BSM偏微分方程L.H.S为
c t ( t , x ) + r x c x ( t , x ) + 1 2 σ 2 x 2 c x x ( t , x ) = Θ + r x Δ + 1 2 σ 2 x 2 Γ = r [ x N ( d + ) − K e − r ( T − t ) N ( d − ) ] = r c ( t , x ) \begin{aligned} &c_t(t, x)+rxc_x(t,x)+\frac{1}{2}\sigma^2x^2c_{xx}(t, x)\\ &=\Theta+rx\Delta+\frac{1}{2}\sigma^2x^2\Gamma\\ &=r[xN(d_+)-Ke^{-r(T-t)}N(d_-)]\\ &=rc(t, x) \end{aligned} ct(t,x)+rxcx(t,x)+21σ2x2cxx(t,x)=Θ+rxΔ+21σ2x2Γ=r[xN(d+)Ker(Tt)N(d)]=rc(t,x)
R.H.S为 r c ( t , x ) rc(t, x) rc(t,x). □ \hspace{5cm}\square

(5) 计算 lim ⁡ t → T d + \lim_{t\to T}d_+ limtTd+ lim ⁡ t → T d − \lim_{t\to T}d_- limtTd对于 x > 0 , x ≠ K x>0, x\neq K x>0,x=K推导终值条件
解析
计算极限
lim ⁡ t → T d + = lim ⁡ t → T ln ⁡ ( x / K ) + ( r + 1 2 σ 2 ) ( T − t ) σ T − t \lim_{t\to T}d_+=\lim_{t\to T}\frac{\ln(x/K)+(r+\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}} tTlimd+=tTlimσTt
ln(x/K)+(r+21σ2)(Tt)

分类讨论:
(1). 当 x > K x>K x>K时, lim ⁡ t → T → + ∞ \lim_{t\to T}\to+\infty limtT+,终值为
lim ⁡ t → T c ( t , x ) = lim ⁡ t → T [ x N ( d + ) − K e − r ( T − t ) N ( d − ) ] = x − K \lim_{t\to T}c(t, x)=\lim_{t\to T}[xN(d_+)-Ke^{-r(T-t)}N(d_-)]=x-K tTlimc(t,x)=tTlim[xN(d+)Ker(Tt)N(d)]=xK
(2). 当 x < K x<K x<K时, lim ⁡ t → 0 x N ( d + ) − K e − r ( T − t ) N ( d − ) = 0 \lim_{t\to 0}{xN(d_+)-Ke^{-r(T-t)}N(d_-)}=0 limt0xN(d+)Ker(Tt)N(d)=0
综上,边界条件为 max ⁡ { x − K , 0 } \max\{x-K, 0\} max{
x
K,0}
. □ \hspace{5cm}\square

(6) 计算 lim ⁡ x → 0 d + \lim_{x\to 0}d_+ limx0d+ lim ⁡ x → 0 d − \lim_{x\to 0}d_- limx0d,对于 0 ≤ t < T 0\leq t\lt T 0t<T推导边界条件 ( 1 ) (1) (1).
解析
计算极限
lim ⁡ x → 0 d + = lim ⁡ x → 0 ln ⁡ ( x / K ) + ( r + 1 2 σ 2 ) ( T − t ) ) σ T − t = − ∞ lim ⁡ x → 0 d − = lim ⁡ x → 0 ln ⁡ ( x / K ) + ( r − 1 2 σ 2 ) ( T − t ) ) σ T − t = − ∞ lim ⁡ x → 0 c ( t , x ) = lim ⁡ x → 0 x N ( d + ) − K e − r ( T − t ) N ( d − ) = 0 \lim_{x\to 0}d_+=\lim_{x\to 0}\frac{\ln(x/K)+(r+\frac{1}{2}\sigma^2)(T-t))}{\sigma\sqrt{T-t}}=-\infty\\ \lim_{x\to 0}d_-=\lim_{x\to 0}\frac{\ln(x/K)+(r-\frac{1}{2}\sigma^2)(T-t))}{\sigma\sqrt{T-t}}=-\infty\\ \lim_{x\to0}c(t, x)=\lim_{x\to 0}xN(d_+)-Ke^{-r(T-t)}N(d_-)=0 x0limd+=x0limσTt
ln(x/K)+(r+21σ2)(Tt))
=
x0limd=x0limσTt
ln(x/K)+(r21σ2)(Tt))
=
x0limc(t,x)=x0limxN(d+)Ker(Tt)N(d)=0

(7) 计算 lim ⁡ x → ∞ d + \lim_{x\to\infty} d_+ limxd+ lim ⁡ x → ∞ d − \lim_{x\to \infty}d_- limxd,对于 0 ≤ t < T 0\leq t<T 0t<T推导边界条件 ( 2 ) (2) (2).
解析
d + d_+ d+反解出 x x x
x = K exp ⁡ { σ T − t d + − ( T − t ) ( r + 1 2 σ 2 ) } x=K\exp\{\sigma\sqrt{T-t}d_+-(T-t)(r+\frac{1}{2}\sigma^2)\} x=Kexp{
σTt
d+
(Tt)(r+21σ2)}

计算极限
lim ⁡ x → ∞ d + = lim ⁡ x → ∞ ln ⁡ ( x / K ) + ( r + 1 2 σ 2 ) ( T − t ) ) σ T − t = ∞ lim ⁡ x → ∞ d − = lim ⁡ x → ∞ ln ⁡ ( x / K ) + ( r − 1 2 σ 2 ) ( T − t ) ) σ T − t = ∞ lim ⁡ x → ∞ c ( t , x ) = lim ⁡ x → ∞ x N ( d + ) − K e − r ( T − t ) N ( d − ) = x − K e − r ( T − t ) ⏟ 远期合约的价值 = R.H.S \lim_{x\to \infty}d_+=\lim_{x\to \infty}\frac{\ln(x/K)+(r+\frac{1}{2}\sigma^2)(T-t))}{\sigma\sqrt{T-t}}=\infty\\ \lim_{x\to \infty}d_-=\lim_{x\to \infty}\frac{\ln(x/K)+(r-\frac{1}{2}\sigma^2)(T-t))}{\sigma\sqrt{T-t}}=\infty\\ \lim_{x\to\infty}c(t, x)=\lim_{x\to \infty}xN(d_+)-Ke^{-r(T-t)}N(d_-)=\underbrace{x-Ke^{-r(T-t)}}_{\text{远期合约的价值}}=\text{R.H.S} xlimd+=xlimσTt
ln(x/K)+(r+21σ2)(Tt))
=
xlimd=xlimσTt
ln(x/K)+(r21σ2)(Tt))
=
xlimc(t,x)=xlimxN(d+)Ker(Tt)N(d)=远期合约的价值


xKer(Tt)
=
R.H.S

Q3:标准Brown运动

题面
{ B t , t ≥ 0 } \{B_t, t\geq 0\} {
Bt,t
0}
是标准Brown运动,计算 P ( B 2 ≤ 0 ) P(B_2\leq 0) P(B20) P ( B t ≤ 0 , t = 0 , 1 , 2 ) P(B_t\leq 0, t=0, 1, 2) P(Bt0,t=0,1,2)
解析
∵ B 2 \because B_2 B2是标准布朗运动. ∴ B 2 ∼ ( 0 , 2 ) , P ( B 2 ≤ 0 ) = 1 2 \therefore B_2\sim(0, 2), P(B_2\leq 0)=\frac{1}{2} B2(0,2),P(B20)=21
P ( B t ≤ 0 , t = 0 , 1 , 2 ) = P ( B 1 ≤ 0 , B 2 ≤ 0 ) P(B_t\leq 0, t=0,1,2)=P(B_1\leq 0, B_2\leq 0) P(Bt0,t=0,1,2)=P(B10,B20)
由Brown运动性质:
(1) B ( t ) ∼ N ( 0 , t ) B(t)\sim\mathcal{N}(0, t) B(t)N(0,t)
(2) B ( t ) − B ( s ) ∼ N ( 0 , t − s ) , 0 ≤ s ≤ t B(t)-B(s)\sim \mathcal{N}(0, t-s), 0\leq s\leq t B(t)B(s)N(0,ts),0st
(3) 独立增量性: ∀ 0 = t 0 < t 1 < ⋯ < t m , B ( t 1 ) − B ( t 0 ) = B ( t 1 ) , B ( t 2 ) − B ( t 1 ) , B ( t 3 ) − B ( t 2 ) , … , B ( t m ) − B ( t m − 1 ) \forall 0=t_0<t_1<\dots<t_m, B(t_1)-B(t_0)=B(t_1), B(t_2)-B(t_1), B(t_3)-B(t_2), \dots, B(t_m)-B(t_{m-1}) 0=t0<t1<<tmB(t1)B(t0)=B(t1),B(t2)B(t1),B(t3)B(t2),,B(tm)B(tm1)增量两两独立且 B ( t j + 1 ) − B ( t j ) ∼ N ( 0 , t j + 1 − t j ) B(t_{j+1})-B(t_{j})\sim\mathcal{N}(0, t_{j+1}-t_j) B(tj+1)B(tj)N(0,tj+1tj).
计算协方差,对于 0 ≤ s < t 0\leq s<t 0s<t
c o v ( B ( s ) , B ( t ) ) = E [ B ( s ) B ( t ) ] − E ( B ( s ) ) E ( B ( t ) ) = E [ B ( s ) B ( t ) ] cov(B(s), B(t))=\mathbb{E}[B(s)B(t)]-\mathbb{E}(B(s))\mathbb{E}(B(t))=\mathbb{E}[B(s)B(t)] cov(B(s),B(t))=E[B(s)B(t)]E(B(s))E(B(t))=E[B(s)B(t)]
运用独立增量性求解
c o v ( B ( s ) , B ( t ) ) = E [ B ( s ) B ( t ) ] = E [ B ( s ) ( B ( t ) − B ( s ) ) + B 2 ( s ) ] = E [ B 2 ( s ) ] = V [ B 2 ( s ) ] = s \begin{aligned} cov(B(s), B(t))&=\mathbb{E}[B(s)B(t)]=\mathbb{E}[B(s)(B(t)-B(s))+B^2(s)]\\ &=\mathbb{E}[B^2(s)]=\mathbb{V}[B^2(s)]\\ &=s \end{aligned} cov(B(s),B(t))=E[B(s)B(t)]=E[B(s)(B(t)B(s))+B2(s)]=E[B2(s)]=V[B2(s)]=s
计算 B ( t 1 ) , B ( t 2 ) , … , B ( t m ) B(t_1), B(t_2), \dots, B(t_m) B(t1),B(t2),,B(tm)的方差-协方差矩阵
E [ B ( t i ) B ( t j ) ] = t i E [ B 2 ( t i ) ] = t i \begin{aligned} &\mathbb{E}[B(t_i)B(t_j)]=t_i\\ &\mathbb{E}[B^2(t_i)]=t_i \end{aligned} E[B(ti)B(tj)]=tiE[B2(ti)]=ti
方差-协方差矩阵 Σ \Sigma Σ
Σ = ( t 1 t 1 … t 1 t 1 t 2 … t 2 ⋮ ⋮ ⋮ ⋮ t 1 t 2 … t m ) m × m \Sigma=\left( \begin{matrix} t_1 & t_1 & \dots &t_1\\ t_1 & t_2 & \dots & t_2\\ \vdots & \vdots &\vdots &\vdots\\ t_1 & t_2 & \dots &t_m \end{matrix} \right)_{m\times m} Σ=t1t1t1t1t2t2t1t2tmm×m
[ B ( t 1 ) , B ( t 2 ) , … , B ( t m ) ] T [B(t_1), B(t_2), \dots, B(t_m)]^T [B(t1),B(t2),,B(tm)]T联合pdf是联合正态分布(jointly normal distribution),即
( B ( t 1 ) B ( t 2 ) ⋮ B ( t m ) ) ∼ N ( 0 , Σ ) \left( \begin{matrix} B(t_1)\\ B(t_2)\\ \vdots\\ B(t_m) \end{matrix} \right)\sim\mathcal{N}(\mathbf{0}, \Sigma) B(t1)B(t2)B(tm)N(0,Σ)
m m m维正态分布的pdf函数为
1 ( 2 π ) m 2 1 ∣ Σ ∣ 1 2 exp ⁡ { − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) } \frac{1}{(2\pi)^\frac{m}{2}}\frac{1}{|\Sigma|^\frac{1}{2}}\exp\{-\frac{1}{2}(\mathbf{x}-\pmb{\mu})^T\Sigma^{-1}(\mathbf{x}-\pmb{\mu)}\} (2π)2m1Σ211exp{
21(x
μμμ)TΣ1(xμ)μ)μ)}

考虑问题中的 B 1 和 B 2 B_1和B_2 B1B2,根据上述公式得到
( B 1 B 2 ) ∼ N ( 0 , Σ ) \left( \begin{matrix} B_1\\ B_2 \end{matrix} \right)\sim\mathcal{N}(\mathbf{0}, \Sigma) (B1B2)N(0,Σ)
其中
Σ = ( 1 1 1 2 ) \Sigma=\left( \begin{matrix} 1 & 1\\ 1 & 2 \end{matrix} \right) Σ=(1112)
得到联合pdf为
f ( b 1 , b 2 ) = 1 2 π exp ⁡ { − 1 2 [ b 1 , b 2 ] Σ − 1 [ b 1 , b 2 ] T } = 1 2 π exp ⁡ { − 1 2 ( 2 b 1 2 − 2 b 1 b 2 + b 2 2 ) } \begin{aligned} f(b_1, b_2)&=\frac{1}{2\pi}\exp\{-\frac{1}{2}[b1, b2]\Sigma^{-1}[b1, b2]^T\}\\ &=\frac{1}{2\pi}\exp\{-\frac{1}{2}(2b_1^2-2b_1b_2+b_2^2)\} \end{aligned} f(b1,b2)=2π1exp{
21[b1,b2]Σ1[b1,b2]T}
=2π1exp{
21(2b122b1b2+b22)}

计算概率
P ( B 1 ≤ 0 , B 2 ≤ 0 ) = ∫ − ∞ 0 ∫ − ∞ 0 f ( b 1 , b 2 ) d b 1 b 2 = ∫ − ∞ 0 1 2 π e − b 1 2 2 d b 1 ∫ − ∞ 0 1 2 π e 1 2 ( b 1 − b 2 ) 2 d b 2 = ∫ − ∞ 0 φ ( b 1 ) ( 1 − Φ ( b 1 ) ) d b 1 = ∫ − ∞ 0 1 − Φ ( b 1 ) d Φ ( b 1 ) = t = Φ ( b 1 ) ∫ 0 1 / 2 1 − t d t = 3 8 \begin{aligned} \mathbb{P}(B_1\leq 0, B_2\leq 0)&=\int_{-\infty}^0\int_{-\infty}^0f(b_1, b_2)db_1b_2 \\ &=\int_{-\infty}^0\frac{1}{\sqrt{2\pi}}e^{-\frac{b_1^2}{2}}db_1\int_{-\infty}^0\frac{1}{\sqrt{2\pi}}e^{\frac{1}{2}(b_1-b_2)^2}db_2\\ &=\int_{-\infty}^0\varphi(b_1)(1-\Phi(b_1))db_1\\ &=\int_{-\infty}^0 1-\Phi(b_1)d\Phi(b_1)\\ &\xlongequal{t=\Phi(b_1)}\int_{0}^{1/2}1-tdt\\ &=\frac{3}{8} \end{aligned} P(B10,B20)=00f(b1,b2)db1b2=02π
1
e2b12db102π
1
e21(b1b2)2db2
=0φ(b1)(1Φ(b1))db1=01Φ(b1)dΦ(b1)t=Φ(b1)
01/21tdt
=83

参考资料

Exercise For Ito Integral Jerry Xu

今天的文章【FinE】Ito Integral习题(1)「建议收藏」分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/88230.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注