转自:https://blog.csdn.net/zaishuiyifangxym/article/details/89788020
目录
1 图像增强——图像平滑
1.1 图像增强简介
图像增强是对图像进行处理,使其比原始图像更适合于特定的应用,它需要与实际应用相结合。对于图像的某些特征如边缘、轮廓、对比度等,图像增强是进行强调或锐化,以便于显示、观察或进一步分析与处理。图像增强主要是一个主观过程,而图像复原大部分是一个客观过程。图像增强的方法是因应用不同而不同的,研究内容包括:
1.2 图像平滑
图像平滑是一种区域增强的算法,平滑算法有邻域平均法、中指滤波、边界保持类滤波等。在图像产生、传输和复制过程中,常常会因为多方面原因而被噪声干扰或出现数据丢失,降低了图像的质量(某一像素,如果它与周围像素点相比有明显的不同,则该点被噪声所感染)。这就需要对图像进行一定的增强处理以减小这些缺陷带来的影响。
图像平滑 有均值滤波、方框滤波、中值滤波和高斯滤波等。下面将介绍常用的均值滤波、中值滤波和高斯滤波。
为了实验方便,首先给图像加一点噪声.
代码如下所示:
# -*- coding:utf-8 -*-
import cv2
import numpy as np
# 读取图片
img = cv2.imread("zxp.jpg", cv2.IMREAD_UNCHANGED)
img_noise=img
cv2.imshow("src", img)
rows, cols, chn = img_noise.shape
# 加噪声
for i in range(5000):
x = np.random.randint(0, rows)
y = np.random.randint(0, cols)
img_noise[x, y, :] = 255
cv2.imshow("noise", img_noise)
# 等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
#保存含噪声图像
cv2.imwrite("zxp_noise.jpg", img_noise)
运行结果如下图所示:
2 均值滤波
均值滤波是指任意一点的像素值,都是周围 N \times M 个像素值的均值。例如下图中,红色点的像素值是其周围蓝色背景区域像素值之和除25,25=5\times5 是蓝色区域的大小。
均值滤波详细的计算方法如下图所示:
其中5×5的矩阵称为核,针对原始图像内的像素点,采用核进行处理,得到结果图像,如下图所示:
提取 1/25 可以将核转换为如下形式:
-
Python调用OpenCV实现 均值滤波 的函数如下: result = cv2.blur(原始图像,核大小)
其中,核大小是以(宽度,高度)表示的元组形式。常见的形式包括:核大小(3,3)和(5,5)。
(1) 核大小为 3 x 3
代码如下所示:# encoding:utf-8 import cv2 import numpy as np import matplotlib.pyplot as plt # 读取图片 img = cv2.imread('zxp_noise.jpg') source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 均值滤波 result = cv2.blur(source, (3, 3)) #可以更改核的大小 # 显示图形 titles = ['Source Image', 'Blur Image (3, 3)'] images = [source, result] for i in range(2): plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray') plt.title(titles[i]) plt.xticks([]), plt.yticks([]) plt.show()
运行结果如下图所示:
(2) 核大小为 5 x 5:
代码如下所示:
# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 均值滤波
result = cv2.blur(source, (5, 5)) #可以更改核的大小
# 显示图形
titles = ['Source Image', 'Blur Image (5, 5)']
images = [source, result]
for i in range(2):
plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
运行结果如下图所示:
(2) 核大小为 10×10
代码如下所示:
# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 均值滤波
result = cv2.blur(source, (10, 10)) #可以更改核的大小
# 显示图形
titles = ['Source Image', 'Blur Image (10, 10)']
images = [source, result]
for i in range(2):
plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
运行结果如下图所示:
注:
1)随着核大小逐渐变大,会让图像变得更加模糊;
2)如果设置为核大小为(1,1),则结果就是原始图像。
3 中值滤波
在使用邻域平均法去噪的同时也使得边界变得模糊。而中值滤波是非线性的图像处理方法,在去噪的同时可以兼顾到边界信息的保留。选一个含有奇数点的窗口W,将这个窗口在图像上扫描,把窗口中所含的像素点按灰度级的升或降序排列,取位于中间的灰度值来代替该点的灰度值。计算过程如下图所示:
Python调用OpenCV实现 中值滤波 的函数如下:
OpenCV主要调用 medianBlur() 函数实现中值滤波。图像平滑里中值滤波的效果最好。
dst = cv2.medianBlur(src, ksize)
其中,参数:
src 表示源图像;
ksize 表示核大小。核必须是大于1的奇数,如3、5、7等。
(1)核大小为 3×3
代码如下所示:
# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图片
img = cv2.imread('zxp_noise.jpg')
# 中值滤波
result = cv2.medianBlur(img, 3)#可以更改核的大小
# 显示图像
cv2.imshow("source img", img)
cv2.imshow("medianBlur", result)
# 等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果如下图所示:
(2)核大小为 5×5
代码如下所示:
# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图片
img = cv2.imread('zxp_noise.jpg')
# 中值滤波
result = cv2.medianBlur(img, 5) #可以更改核的大小
# 显示图像
cv2.imshow("source img", img)
cv2.imshow("medianBlur", result)
# 等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果如下图所示:
(3)核大小为 7×7
代码如下所示:
# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图片
img = cv2.imread('zxp_noise.jpg')
# 中值滤波
result = cv2.medianBlur(img, 7) #可以更改核的大小
# 显示图像
cv2.imshow("source img", img)
cv2.imshow("medianBlur", result)
# 等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
运行结果如下图所示:
注:
1)随着核大小逐渐变大,会让图像变得更加模糊;
2)核必须是大于1的奇数,如3、5、7等;
3)在代码 dst = cv2.medianBlur(src, ksize) 中 填写核大小时,只需填写一个数即可,如3、5、7等,对比均值滤波函数用法。
4 高斯滤波
为了克服简单局部平均法的弊端(图像模糊),目前已提出许多保持边缘、细节的局部平滑算法。它们的出发点都集中在如何选择邻域的大小、形状和方向、参数加平均及邻域各店的权重系数等。
图像高斯平滑也是邻域平均的思想对图像进行平滑的一种方法,在图像高斯平滑中,对图像进行平均时,不同位置的像素被赋予了不同的权重。高斯平滑与简单平滑不同,它在对邻域内像素进行平均时,给予不同位置的像素不同的权值,下图的所示的 3\times3 和 5\times5 邻域的高斯模板。
(1)核大小为 3×3
(1)核大小为 5×5
高斯滤波让临近的像素具有更高的重要度,对周围像素计算加权平均值,较近的像素具有较大的权重值。如下图所示,中心位置权重最高为0.4。
Python中OpenCV主要调用 GaussianBlur() 函数,如下:
dst = cv2.GaussianBlur(src, ksize, sigmaX)
其中,参数:
src 表示原始图像;
ksize 表示核大小;
sigmaX 表示X方向方差。
注:核大小(N, N)必须是奇数,X方向方差主要控制权重。
1)核大小为 3×3
2)核大小为 5×5
(1)核大小为 3×3
代码如下所示:
# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 高斯滤波
result = cv2.GaussianBlur(source, (3, 3), 0) #可以更改核大小
# 显示图形
titles = ['Source Image', 'GaussianBlur Image (3, 3)']
images = [source, result]
for i in range(2):
plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
运行结果如下图所示:
(1)核大小为 5×5
代码如下所示:
# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 高斯滤波
result = cv2.GaussianBlur(source, (5, 5), 0) #可以更改核大小
# 显示图形
titles = ['Source Image', 'GaussianBlur Image (5, 5)']
images = [source, result]
for i in range(2):
plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()
运行结果如下图所示:
注:
1)随着核大小逐渐变大,会让图像变得更加模糊;
2)核大小(N, N)必须是大于1的奇数,如3、5、7等;
今天的文章数字图像处理:图像平滑 (均值滤波、中值滤波和高斯滤波)分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/8995.html