知识点 - 因数之和 因数个数公式

知识点 - 因数之和 因数个数公式知识点 因数之和因数个数公式解决问题类型 问有几个因数 因数之和 或者问某些特定约数之和 比如不能被大于 4 的平方数整除的约数之和 即质因数的次数都为 1 结论若对 nnn 质因数分解得到 p1e1 p2e2 pkekp 1 e 1 cdotp 2 e 2 cdotsp k e k p1e1 p2e2 pkek 则有因数个数公式 d n e1 1 因数和公式

知识点 - 因数之和 因数个数公式

解决问题类型:

问有几个因数,因数之和,

或者问某些特定约数之和,比如不能被大于4的平方数整除的约数之和(即质因数的次数都为1)

结论

若对 n n n 质因数分解得到 p 1 e 1 ⋅ p 2 e 2 ⋯ p k e k p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k} p1e1p2e2pkek则有

因数个数公式:

d ( n ) = ( e 1 + 1 ) ⋅ ( e 2 + 1 ) ⋯ ( e k + 1 ) d(n) = (e_1 + 1) \cdot (e_2 + 1) \cdots (e_k + 1) d(n)=(e1+1)(e2+1)(ek+1)

e.g.:设 n = p 1 e 1 ⋅ p 2 e 2 n = p_1^{e_1} \cdot p_2^{e_2} n=p1e1p2e2
1 p 2 p 2 2 … p 2 e 2 1 1 p 2 p 2 2 … p 2 e 2 p 1 p 1 p 1 ⋅ p 2 p 1 ⋅ p 2 2 … p 1 ⋅ p 2 e 2 p 1 2 p 1 2 p 1 2 ⋅ p 2 p 1 2 ⋅ p 2 2 … p 1 2 ⋅ p 2 e 2 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ p 1 e 1 p 1 e 1 p 1 e 1 ⋅ p 2 p 1 e 1 ⋅ p 2 2 … p 1 e 1 ⋅ p 2 e 2 \begin{array}{c|ccccc} & 1 & p_2 & p_2^2 & \dots & p_2^{e_2} \\\\ \hline 1 & 1 & p_2 & p_2^2 & \dots & p_2^{e_2} \\\\ p_1 & p_1 & p_1 \cdot p_2 & p_1 \cdot p_2^2 & \dots & p_1 \cdot p_2^{e_2} \\\\ p_1^2 & p_1^2 & p_1^2 \cdot p_2 & p_1^2 \cdot p_2^2 & \dots & p_1^2 \cdot p_2^{e_2} \\\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\\\ p_1^{e_1} & p_1^{e_1} & p_1^{e_1} \cdot p_2 & p_1^{e_1} \cdot p_2^2 & \dots & p_1^{e_1} \cdot p_2^{e_2} \\\\ \end{array} 1p1p12p1e111p1p12p1e1p2p2p1p2p12p2p1e1p2p22p22p1p22p12p22p1e1p22p2e2p2e2p1p2e2p12p2e2p1e1p2e2
显然 d ( n ) = ( e 1 + 1 ) ⋅ ( e 2 + 1 ) d(n)=(e_1 + 1) \cdot (e_2 + 1) d(n)=(e1+1)(e2+1)

因数和公式

σ ( n ) = p 1 e 1 + 1 − 1 p 1 − 1 ⋅ p 2 e 2 + 1 − 1 p 2 − 1 ⋯ p k e k + 1 − 1 p k − 1 \sigma(n) = \frac{p_1^{e_1 + 1} - 1}{p_1 - 1} \cdot \frac{p_2^{e_2 + 1} - 1}{p_2 - 1} \cdots \frac{p_k^{e_k + 1} - 1}{p_k - 1} σ(n)=p11p1e1+11p21p2e2+11pk1pkek+11

e.g.设 n = p 1 e 1 ⋅ p 2 e 2 n = p_1^{e_1} \cdot p_2^{e_2} n=p1e1p2e2
σ ( n ) = ( 1 + p 1 + p 1 2 + ⋯ + p 1 e 1 ) ⋅ ( 1 + p 2 + p 2 2 + ⋯ + p 2 e 2 ) ∵ 1 + p 1 + p 1 2 + ⋯ + p 1 e 1 = p 1 e 1 + 1 − 1 p 1 − 1 ∴ σ ( n ) = p 1 e 1 + 1 − 1 p 1 − 1 ⋅ p 2 e 2 + 1 − 1 p 2 − 1 \sigma(n)=\left(1 + p_1 + p_1^2 + \dots + p_1^{e_1}\right) \cdot \left(1 + p_2 + p_2^2 + \dots + p_2^{e_2}\right)\\ \because 1 + p_1 + p_1^2 + \dots + p_1^{e_1} = \frac{p_1^{e_1 + 1} - 1}{p_1 - 1}\\ \therefore\sigma(n) = \frac{p_1^{e_1 + 1} - 1}{p_1 - 1} \cdot \frac{p_2^{e_2 + 1} - 1}{p_2 - 1} σ(n)=(1+p1+p12++p1e1)(1+p2+p22++p2e2)1+p1+p12++p1e1=p11p1e1+11σ(n)=p11p1e1+11p21p2e2+11

d ( n ) d(n) d(n) and σ ( n ) \sigma(n) σ(n)都是积性函数

​ 可以迪利克雷卷积

质因数的次数都为1的因数和公式

1 + p 1 + p 2 + ⋯ + p k + p 1 ⋅ p 2 + p 1 ⋅ p 3 + ⋯ + p k − 1 ⋅ p k + p 1 ⋅ p 2 ⋅ p 3 + ⋯ + p 1 ⋅ p 2 ⋯ p k − 1 ⋅ p k = ( p 1 + 1 ) ⋅ ( p 1 + 1 ) ⋯ ( p k + 1 ) 1+p_1+p_2+\cdots+p_k+\\p_1\cdot p_2+p_1\cdot p_3+\cdots+ p_{k-1}\cdot p_k+\\p_1\cdot p_2\cdot p_3 +\cdots + p_1\cdot p_2\cdots p_{k-1}\cdot p_k\\ =(p_1+1)\cdot(p_1+1)\cdots(p_k+1) 1+p1+p2++pk+p1p2+p1p3++pk1pk+p1p2p3++p1p2pk1pk=(p1+1)(p1+1)(pk+1)

复杂度:

公式题,复杂度在乘法和快速幂上,

O ( k ∗ l o g e ) O(k*log e) O(kloge)

也可以对 ( 1 + p 1 + p 1 2 + ⋯ + p 1 e 1 ) \left(1 + p_1 + p_1^2 + \dots + p_1^{e_1}\right) (1+p1+p12++p1e1)如果二分递归求:举例来说, 1 + a + a 2 + a 3 + a 4 = ( 1 + a ) ∗ ( 1 + a 2 ) + a 2 ; ( 1 + a ) = 1 ∗ ( 1 + a ) 1+a+a^2+a^3+a^4=(1+a)*(1+a^2)+a^2;(1+a)=1*(1+a) 1+a+a2+a3+a4=(1+a)(1+a2)+a2;(1+a)=1(1+a)。根据奇偶二分下去。直到只有一个数为止。

O ( k ∗ l o g 2 e ) O(k*log^2 e) O(klog2e)

例题

Sumdiv

Let S be the sum of all natural divisors of A^B. Determine S modulo 9901.

代码

#include<cstdio> #include<cstring> #ifdef unix #define LL "%lld" #else #define LL "%I64d" #endif #define mod 9901  using namespace std; typedef long long ll; const int N=1e5+10; ll tot,c[N/3],prime[N/3]; bool check[N]={ 
   1,1}; void get_prime(){ 
    ll n=10010; for(ll i=2;i<=n;i++){ 
    if(!check[i]) prime[++tot]=i; for(ll j=1;j<=tot&&i*prime[j]<=n;j++){ 
    check[i*prime[j]]=1; if(i%prime[j]==0) break; } } } ll mul(ll a,ll p,ll M){ 
    ll res=0; for(;p;p>>=1,a=(a+a)%M) if(p&1) res=(res+a)%M; return res; } ll fpow(ll a,ll p,ll M){ 
    ll res=1; for(;p;p>>=1,a=mul(a,a,M)) if(p&1) res=mul(res,a,M); return res; } void factor(ll A,ll B){ 
    ll ans=1; for(ll i=1;prime[i]*prime[i]<=A;i++){ 
    if(A%prime[i]==0){ 
    ll num=0; while(A%prime[i]==0) num++,A/=prime[i]; ll MOD=(prime[i]-1)*mod; ans*=(fpow(prime[i],num*B+1,MOD)+MOD-1)/(prime[i]-1); ans%=mod; } } if(A>1){ 
    ll MOD=mod*(A-1); ans*=(fpow(A,B+1,MOD)+MOD-1)/(A-1); ans%=mod; } printf(LL"\n",ans); } int main(){ 
    get_prime(); for(ll A,B;scanf(LL LL,&A,&B)==2;) factor(A,B); return 0; } 
//递归二分代码: #include <cstdio> #include <cmath> #include <iostream> #include <algorithm> using namespace std; const int mod=9901; int pow_mod(int a,int b) { 
    a=a%mod; int s=1; while(b) { 
    if(b&1) s=(s*a)%mod; a=(a*a)%mod; b=b>>1; } return s; } int sum(int a,int b)//求1+a+a^2+...+a^b { 
    if(b==1)return 1; if(b&1)return (sum(a,b/2)*(1+pow_mod(a,b/2+1))+pow_mod(a,b/2))%mod; else return sum(a,b/2)*(1+pow_mod(a,b/2))%mod; } int main() { 
    int a,b; while(cin>>a>>b) { 
    if(a<=1||b==0){ 
   cout<<1<<endl;continue;} int ans=1,i,j,k,t,n,m; n=(int)sqrt(a+0.5); for(i=2;i<=n;i++) { 
    if(a%i==0) { 
    t=0; while(a%i==0){ 
    a=a/i; t++; } ans=ans*sum(i,t*b+1)%mod; } } if(a>1) ans=ans*sum(a,b+1)%mod; cout<<(ans+mod)%mod<<endl; } return 0; } 
今天的文章 知识点 - 因数之和 因数个数公式分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2024-12-07 08:30
下一篇 2024-12-07 08:17

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/80310.html