YARN和MapReduce的内存设置参考

YARN和MapReduce的内存设置参考本文介绍了如何为 YARN 和 MapReduce 设置内存参数 包括使用 HDP 配置工具脚本和手动计算方法

如何确定Yarn中容器Container,Mapreduce相关参数的内存设置,对于初始集群,由于不知道集群的类型(如cpu密集、内存密集)我们需要根据经验提供给我们一个参考配置值,来作为基础的配置。

完成这一任务有两种方式,确定YARN和MapReduce的内存设置,我们可以使用HDP工具脚本进行内存配置设定

运行hdp-configuration-utils.py 这个Python脚本(下载地址:hdp-configuration-utils)来计算YARN、MapReduce需要的内存,执行以下命令

python hdp-configuration-utils.py options

其中可选项如下:

选项

描述

-c CORES

每一个客户机的核数目

-m MEMORY

每一个客户机拥有的内存总数

-d DISK

每一个客户机拥有的磁盘数目

-k HBASE

如果Hbase安装了为”True”,否则为”False”

注:需要python26的运行环境

我们可以使用-h或-help来显示描述选项的帮助信息。

例子

运行下面的命令

python hdp-configuration-utils.py -c 16 -m 64 -d 4 -k True

结果如下:

手动计算YARN和MapReduce内存配置设置

接下来我们将描述如何基于特定的硬件,手工的设置YARN和MapReduce内存。

YARN可以考虑集群中所有节点的可用的计算机资源。基于可用的资源,YARN会沟通协调应用程序(如:mapReduce)需要的资源。YARN会为每一个应用提供相应的容器Container。容器Container是YARN的基本处理单,是内存和CPU资源的一种封装。

在Hadoop集群中,平衡内存RAM、处理器cpu和磁盘的使用是非常重要的。作为一般的推荐,为每个磁盘和每个核分配两个容器,为集群的利用率提供了最好的平衡。

当为一个集群决定合适的YARN和MapReduce内存设置时,从可用的硬件资源开始,注意每个节点的以下值:

RAM(内存的数量)

CORES(CPU的核数)

DISKS(磁盘的数目)

整个针对YARN和MapReduce可用的RAM数,应该考虑预留的内存。预留的内存主要用于系统进程占用和其它Hadoop进程(如Hbase)。

预留的内存=保留栈内存+Hbase预留内存(如果Hbase是部署在同一台机器上)

 

我们通常会使用下表来决定预留内存的大小

每个节点的总内存

推荐系统保留的内存

推荐为hbase保留的内存

4GB

1GB

1GB

今天的文章 YARN和MapReduce的内存设置参考分享到此就结束了,感谢您的阅读。
编程小号
上一篇 2024-12-09 23:30
下一篇 2024-12-09 23:27

相关推荐

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/bian-cheng-ji-chu/81555.html