排列数公式
公式P是排列公式,从N个元素取M个进行排列(即排序)。(P是旧用法,现在教材上多用A,即Arrangement)
排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示。 p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1)
组合数公式
排列与元素的顺序有关,组合与顺序无关。
如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。
C(n,m)=C(n,n-m)。(n≥m)
组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
基本计数原理
加法原理和分类计数法
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
乘法原理和分步计数法
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
例题
一.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.
先排末位共有C31
然后排首位共有C41
最后排其它位置共有A43
由分步计数原理得C31*C41*A43=288
二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有A22*A22*A55种不同的排法。
三.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共有A55种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有A64种不同的方法,由分步计数原理,节目的不同顺序共有A55*A64种
四.定序问题倍缩空位插入策略
例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:A77/A33
(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有A74种方法,其余的三个位置甲乙丙共有 1种坐法,则共有A74种方法。
定序问题可以用被缩法,还可以转化为占位插
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有7*7*7*7*7*7种不同的排法
六.环排问题线排策略
例6. 8人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人A44并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!
一般地,n个不同元素做圆形排列,共有(n-1)!种排法,如果从n个不同元素中取出m个元素做圆形排列共有1/n*Amn
七.多排问题直排策略
例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有A42种,再排后4个位置上的特殊元素丙有A41种,其余的5人在5个位置上任意排列有A55种,则共有种A42*A41*A55
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究
八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
解:第一步从5个球中选出2个组成复合元共有C52种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有A44种方法,根据分步计数原理装球的方法共有C52*A44
解决排列组合混合问题,先选后排是最基本的指导思想
九.小集团问题先整体后局部策略
小集团排列问题中,先整体后局部,再结合其他策略进行处理。
十.元素相同问题隔板策略
例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应
地分给7个班级,每一种插板方法对应一种分法共有C96种分法。
将n个相同元素分成m份,每份至少一个元素,可以用m-1快隔板,插入n个元素排成一排的n-1个空隙中,所以分法有C(n-1)(m-1)
今天的文章排列组合解析与例题总结分享到此就结束了,感谢您的阅读。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/12687.html