图的广度优先和深度优先遍历(BFS和DFS)

图的广度优先和深度优先遍历(BFS和DFS)图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。 图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。 在图的基本算法中,最初需要接触的就是图…

图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。 图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。 在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。


广度优先搜索(BFS) 广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。 a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。 b. 将起始结点放入队列中。 c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现 d. 按照同样的方法处理队列中的下一个结点。 基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。 用一副图来表达这个流程如下:

1.初始状态,从顶点1开始,队列={1}
2.访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
3.访问2的邻接结点,2出队,4入队,队列={3,4}
4.访问3的邻接结点,3出队,队列={4}
5.访问4的邻接结点,4出队,队列={ 空}

从顶点1开始进行广度优先搜索:

  1. 初始状态,从顶点1开始,队列={1}
  2. 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
  3. 访问2的邻接结点,2出队,4入队,队列={3,4}
  4. 访问3的邻接结点,3出队,队列={4}
  5. 访问4的邻接结点,4出队,队列={ 空} 结点5对于1来说不可达。 上面的图可以通过如下邻接矩阵表示:
int maze[5][5] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 1, 0 },
	{ 0, 1, 1, 1, 0 },
	{ 1, 0, 0, 0, 0 },
	{ 0, 0, 1, 1, 0 }
};

BFS核心代码如下:

#include <iostream>
#include <queue>
#define N 5
using namespace std;
int maze[N][N] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 1, 0 },
	{ 0, 1, 1, 1, 0 },
	{ 1, 0, 0, 0, 0 },
	{ 0, 0, 1, 1, 0 }
};
int visited[N + 1] = { 0, };
void BFS(int start)
{
	queue<int> Q;
	Q.push(start);
	visited[start] = 1;
	while (!Q.empty())
	{
		int front = Q.front();
		cout << front << " ";
		Q.pop();
		for (int i = 1; i <= N; i++)
		{
			if (!visited[i] && maze[front - 1][i - 1] == 1)
			{
				visited[i] = 1;
				Q.push(i);
			}
		}
	}
}
int main()
{
	for (int i = 1; i <= N; i++)
	{
		if (visited[i] == 1)
			continue;
		BFS(i);
	}
	return 0;
}

深度优先搜索(DFS) 深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。 初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历: a. 选择起始顶点涂成灰色,表示还未访问 b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了 c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。 d. 上一层继续做如上操作,知道所有顶点都访问过。 用图可以更清楚的表达这个过程:

1.初始状态,从顶点1开始
2.依次访问过顶点1,2,3后,终止于顶点3
3.从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
4.从顶点5回溯到顶点2,并且终止于顶点2
5.从顶点2回溯到顶点1,并终止于顶点1
6.从顶点4开始访问,并终止于顶点4

从顶点1开始做深度搜索:

  1. 初始状态,从顶点1开始
  2. 依次访问过顶点1,2,3后,终止于顶点3
  3. 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
  4. 从顶点5回溯到顶点2,并且终止于顶点2
  5. 从顶点2回溯到顶点1,并终止于顶点1
  6. 从顶点4开始访问,并终止于顶点4

上面的图可以通过如下邻接矩阵表示:

int maze[5][5] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 0, 1 },
	{ 0, 0, 1, 0, 0 },
	{ 1, 1, 0, 0, 1 },
	{ 0, 0, 1, 0, 0 }
};

DFS核心代码如下(递归实现):

#include <iostream>
#define N 5
using namespace std;
int maze[N][N] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 0, 1 },
	{ 0, 0, 1, 0, 0 },
	{ 1, 1, 0, 0, 1 },
	{ 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
	visited[start] = 1;
	for (int i = 1; i <= N; i++)
	{
		if (!visited[i] && maze[start - 1][i - 1] == 1)
			DFS(i);
	}
	cout << start << " ";
}
int main()
{
	for (int i = 1; i <= N; i++)
	{
		if (visited[i] == 1)
			continue;
		DFS(i);
	}
	return 0;
}

非递归实现如下,借助一个栈:

#include <iostream>
#include <stack>
#define N 5
using namespace std;
int maze[N][N] = {
	{ 0, 1, 1, 0, 0 },
	{ 0, 0, 1, 0, 1 },
	{ 0, 0, 1, 0, 0 },
	{ 1, 1, 0, 0, 1 },
	{ 0, 0, 1, 0, 0 }
};
int visited[N + 1] = { 0, };
void DFS(int start)
{
	stack<int> s;
	s.push(start);
	visited[start] = 1;
	bool is_push = false;
	while (!s.empty())
	{
		is_push = false;
		int v = s.top();
		for (int i = 1; i <= N; i++)
		{
			if (maze[v - 1][i - 1] == 1 && !visited[i])
			{
				visited[i] = 1;
				s.push(i);
				is_push = true;
				break;
			}
		}
		if (!is_push)
		{
			cout << v << " ";
			s.pop();
		}

	}
}
int main()
{
	for (int i = 1; i <= N; i++)
	{
		if (visited[i] == 1)
			continue;
		DFS(i);
	}
	return 0;
}

有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。

PS: 图文均为本人原创,画了好几个小时,转载注明出处,尊重知识劳动,谢谢~

今天的文章图的广度优先和深度优先遍历(BFS和DFS)分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/13863.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注