python数据接口获取数据_python 调用API接口 获取和解析 Json数据

python数据接口获取数据_python 调用API接口 获取和解析 Json数据任务背景:调用API接口数据,抽取我们所需类型的数据,并写入指定mysql数据库。先从宏观上看这个任务,并对任务进行分解:step1:需要学习python下的通过url读取数据的方式;step2:数据解析,也是核心部分,数据格式从python角度去理解,是字典?列表?还是各种嵌套?step3:连接mysql数据库,将数据写入。从功能上看,该数据获取程序可以分为3个方法,即step1对应方法requ…

任务背景:

调用API接口数据,抽取我们所需类型的数据,并写入指定mysql数据库。

先从宏观上看这个任务,并对任务进行分解:

step1:需要学习python下的通过url读取数据的方式;

step2:数据解析,也是核心部分,数据格式从python角度去理解,是字典?列表?还是各种嵌套?

step3:连接mysql数据库,将数据写入。

从功能上看,该数据获取程序可以分为3个方法,即step1对应方法request_data(),step2对应方法parse_data(),step3对应data_to_db()。

第一轮,暂不考虑异常,只考虑正常状态下的功能实现。

1、先看request_data():

import requests

def request_data(url):

req = requests.get(url, timeout=30) # 请求连接

req_jason = req.json() # 获取数据

return req_jason

入参:url地址;return:获取到的数据。

2、然后看parse_data():

不同的API接口下的数据格式各不相同,需要先理清,打开之后密密麻麻一大串,有的可能连完整的一轮数据间隔在哪都不知道,这时候可以巧用符号{ [ , ] }辅助判断。

梳理之后,发现本接口下的数据格式为,最外层为字典,我们所需的数据在第一个key“data”下,data对应的value为列表,列表中的每个元素为字典,字典中的部分键值

即为我们需要的内容。这样,就明确了我们的数据结构为字典套列表,列表再套字典的格式,最后一层的字典还存在一键多值(比如“weather”)的情况。

当然,还有懒人方法,就是百度json在线解析格式化。

摘取部分数据如下:{“data”:[{“timestamp_utc”:”2020-08-31T08:00:00″,”weather”:{“icon”:”c02d”,”code”:802,

wind_dir”:336,”clouds_hi”:0,”precip”:0.0625},{“timestamp_utc”:”2020-08-31T08:00:00″,”weather”:{“icon”:”c02d”,”code”:802,},

wind_dir”:336,”clouds_hi”:0,”precip”:0.0625],”city_name”:”Dianbu”,”lon”:117.58,”timezone”:”Asia\/Shanghai”,”lat”:31.95,”country_code”:”CN”}

def parse_data(req_jason):

data_trunk = req_jason[‘data’]# 获取data键值下的列表

time_now = datetime.datetime.now().strftime(“%Y-%m-%d %H:%M:%S”) #获取当前时刻

for i in range(len(data_trunk)):

data_unit = data_trunk[i] # 依次获取列表下第i个元素即字典

del data_unit[‘weather’] # 删除该字典中不需要的一键多值的key和value,不删除的话会影响后续的dataframe转换,但是,如果该键值需要的话,需要采取其他处理方式

df = pd.DataFrame([data_unit]) # 将删除键值后的字典转为datafrme

list_need = [‘timestamp_utc’, ‘wind_dir’, ‘precip’,’clouds_hi’] # 列出我们需要的列

df_need = df[list_need] # 保留df中需要的列 10 df_need.insert(0, ‘update_time’, time_now) #表格中还需额外增加获取数据的当前时间,并且需要放在dataframe的第一列

备注:数据插入数据库,有两种方式,一种是采用insert的sql语句,采用字典的形式插入,另一种是采用dataframe的方式,采用pandas中的to_sql方法。本案例选择了后者,所以在数据解析时,将字典数据转成dataframe格式。

入参:获取到的数据;return值:无

运行以后,发现这样的程序存在一些问题:就是这个for循环括起来的过多,导致写数据库时是一条条写入而不是一整块写入,会影响程序效率,所以需要对程序进行如下修改:

def parse_data(req_jason):

data_trunk = req_jason[‘data’]# 获取data键值下的列表

time_now = datetime.datetime.now().strftime(“%Y-%m-%d %H:%M:%S”) #获取当前时刻

for i in range(len(data_trunk)):

data_unit = data_trunk[i] # 依次获取列表下第i个元素即字典

del data_unit[‘weather’] # 删除该字典中不需要的一键多值的key和value,不删除的话会影响后续的dataframe转换,但是,如果该键值需要的话,需要采取其他处理方式

df = pd.DataFrame(data_trunk) # 将删除键值后的整个列表套字典转为datafrme

list_need = [‘timestamp_utc’, ‘wind_dir’, ‘precip’,’clouds_hi’] # 列出我们需要的列

df_need = df[list_need] # 保留df中需要的列

df_need.insert(0, ‘update_time’, time_now) #表格中还需额外增加获取数据的当前时间,并且需要放在dataframe的第一列

也就是从第7行之后跳出循环;

如果觉得for循环影响整体美观,也可以用map代替,将代码第4/5/6行改为如下代码,不过性能上来说可能还是for循环更好,具体对比可看其他博主的测试,或者自己测试下运行时间。

map(data_trunk.pop, [‘weather’])

3. 最后就是data_to_sql():

def data_to_sql(df):

table = ‘request_data_api’

engine = create_engine(“mysql+pymysql://” + ‘root’ + “:” + ‘123’ + “@” + ‘localhost’ + “:” + ‘3306’ + “/” + ‘test’ + “?charset=utf8”)

df.to_sql(name=table, con=engine, if_exists=’append’,

index=False, index_label=False)

入参:dataframe类型数据。

当当当,正常部分已完成,就下来就需要想象各种异常以及处理对策。

第二轮,想象各种异常以及异常的记录与处理对策。

1.读取url后,获取不到数据 → 休息几秒,尝试再次重连获取

2.连接数据库异常 → 数据库可能关闭,尝试重新ping,

3.写入数据库的内容为空 → 记录异常,放弃入库

第三轮,让程序定时跑起来。

方法一:在代码中采用apscheduler下的cron功能(trigger=’cron‘,类似linux下的crontab)实现定时运行(当然,apscheduler还有另一种trigger=‘interval’模式);

方法二:在linux下的crontab增加定时任务。

具体可以看别的帖子。

以上就是python 调用API接口 获取和解析 Json数据的详细内容,更多关于python 解析数据的资料请关注聚米学院其它相关文章!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/36645.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注