安振平不等式_schwards不等式

安振平不等式_schwards不等式舒尔( Schur \t…

安振平不等式_schwards不等式

舒尔(

Schur

\texttt{Schur}

Schur)不等式1

具体内容

Schur

\texttt{Schur}

Schur 不等式:

x

y

z

x,y,z

xyz 为非负实数,

r

r

r 为实数时,下列不等式成立

x

r

(

x

y

)

(

x

z

)

+

y

r

(

y

x

)

(

y

z

)

+

z

r

(

z

x

)

(

z

y

)

0

x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)0

例子

  • r

    =

    0

    r=0

    r=0

    (

    x

    y

    )

    (

    x

    z

    )

    +

    (

    y

    x

    )

    (

    y

    z

    )

    +

    (

    z

    x

    )

    (

    z

    y

    )

    0

    (x-y)(x-z)+(y-x)(y-z)+(z-x)(z-y)\ge 0

    (xy)(xz)+(yx)(yz)+(zx)(zy)0

    x

    2

    +

    y

    2

    +

    z

    2

    x

    y

    y

    z

    z

    x

    0

    \Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge 0

    x2+y2+z2xyyzzx0

    1

    2

    {

    (

    x

    y

    )

    2

    +

    (

    y

    z

    )

    2

    +

    (

    z

    x

    )

    2

    }

    0

    \Leftrightarrow \frac{1}{2}\{(x-y)^2+(y-z)^2+(z-x)^2\} \ge 0

    21{(xy)2+(yz)2+(zx)2}0

  • r

    =

    1

    r=1

    r=1

    x

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y)\ge 0

    x(xy)(xz)+y(yx)(yz)+z(zx)(zy)0

    x

    3

    +

    y

    3

    +

    z

    3

    +

    3

    x

    y

    z

    x

    y

    (

    x

    +

    y

    )

    +

    y

    z

    (

    y

    +

    z

    )

    +

    z

    x

    (

    z

    +

    x

    )

    \Leftrightarrow x^3+y^3+z^3+3xyz\ge xy(x+y)+yz(y+z)+zx(z+x)

    x3+y3+z3+3xyzxy(x+y)+yz(y+z)+zx(z+x)

  • r

    =

    1

    2

    r=\dfrac{1}{2}

    r=21

    x

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    (

    z

    x

    )

    (

    z

    y

    )

    0

    \sqrt{x}(x-y)(x-z)+\sqrt{y}(y-x)(y-z)+\sqrt{z}(z-x)(z-y)\ge 0

    x

    (xy)(xz)+y

    (yx)(yz)+z

    (zx)(zy)0

    x

    3

    2

    (

    y

    +

    z

    x

    )

    +

    y

    3

    2

    (

    z

    +

    x

    y

    )

    +

    z

    3

    2

    (

    x

    +

    y

    z

    )

    x

    y

    z

    (

    1

    x

    +

    1

    y

    +

    1

    z

    )

    \Leftrightarrow x^{\frac{3}{2}}(y+z-x)+y^{\frac{3}{2}}(z+x-y)+z^{\frac{3}{2}}(x+y-z)\le xyz\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)

    x23(y+zx)+y23(z+xy)+z23(x+yz)xyz(x

    1+y

    1+z

    1)

证明

证明:
左边是

x

,

y

,

z

x,y,z

x,y,z 的对称式,设

x

y

z

x\ge y\ge z

xyz 不失一般性.

  1. r

    >

    0

    r>0

    r>0

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)

    xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)

    =

    (

    x

    y

    )

    {

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    }

    +

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    =(x-y)\{x^r(x-z)-y^r(y-z)\}+z^r(x-z)(y-z)

    =(xy){xr(xz)yr(yz)}+zr(xz)(yz)

    x

    r

    y

    r

    0

    ,

     

    x

    z

    y

    z

    0

    x^r\ge y^r \ge 0,\ x-z\ge y-z \ge 0

    xryr0, xzyz0
    因为

    (

    x

    y

    )

    [

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    ]

    0

    (x-y)\left[x^r(x-z)-y^r(y-z)\right]\ge 0\text{,}

    (xy)[xr(xz)yr(yz)]0又因为

    z

    r

    0

    ,

     

    x

    z

    0

    ,

     

    y

    z

    0

    ,

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    0

    z^r\ge 0,\ x-z\ge 0,\ y-z \ge 0, z^r(x-z)(y-z)\ge 0

    zr0, xz0, yz0,zr(xz)(yz)0根据

    (

    x

    y

    )

    {

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    }

    +

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    0

    (x-y)\{x^r(x-z)-y^r(y-z)\}+z^r(x-z)(y-z)\ge 0

    (xy){xr(xz)yr(yz)}+zr(xz)(yz)0所以,

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

    xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)0

  2. r

    0

    r\le 0

    r0

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)

    xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)

    =

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    (

    y

    z

    )

    {

    z

    r

    (

    x

    z

    )

    y

    r

    (

    x

    y

    )

    }

    =x^r(x-y)(x-z)+(y-z)\{z^r(x-z)-y^r(x-y)\}

    =xr(xy)(xz)+(yz){zr(xz)yr(xy)}同理可得,

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

    xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)0

例题

1 

a

,

b

,

c

a,b,c

a,b,c 为非负实数时,请证明以下不等式。

(

a

+

b

c

)

(

b

+

c

a

)

(

c

+

a

b

)

a

b

c

(a+b-c)(b+c-a)(c+a-b)\le abc

(a+bc)(b+ca)(c+ab)abc

2 非负实数

a

,

b

,

c

a,b,c

a,b,c

a

+

b

+

c

=

1

a+b+c=1

a+b+c=1,请证明以下不等式。

a

3

+

b

3

+

c

3

+

6

a

b

c

1

4

a^3+b^3+c^3+6abc\ge \frac{1}{4}

a3+b3+c3+6abc41

广告

绿树公司 – 官方网站:https://wangping-lvshu.github.io/LvshuNew/

绿树智能 – 官方网站:https://wangping-lvshu.github.io/LvshuZhineng/

(现在使用,人人均可获得300元大奖)


  1. [2022/04/09更新] 由于

    tag

    \texttt{tag}

    tag 中没有 数论 数学 等标签,所以现在的标签是错误的。 ↩︎

今天的文章安振平不等式_schwards不等式分享到此就结束了,感谢您的阅读,如果确实帮到您,您可以动动手指转发给其他人。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/45147.html

(0)
编程小号编程小号
上一篇 2023-09-07
下一篇 2023-09-07

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注