神经网络预测适用范围_神经网络做回归预测

神经网络预测适用范围_神经网络做回归预测这个要视处理的问题而定,训练网络的样本是基于多少年的数据,相应预测的就是多少年的数据

神经网络预测适用范围_神经网络做回归预测

1、采用什么手段使神经网络预测更加准确

  1. 优化神经网络结构。如BP神经网络改变隐层神经元数量、训练算法等;

  2. 使用其他神经网络。如Elman神经网络考虑了前一时刻的输出,比较适合用于预测,预测效果往往更好。RBF神经网络的训练速度很快,训练效果也很好。

  3. 改进的神经网络算法。例如BP神经网络增加动量项、自适应学习率等措施,防止陷入局部极小影响预测效果。

  4. 组合神经网络。取长补短,将全局搜索能力强的算法与局部逼近快的算法组合起来,如遗传算法优化初始权值,再训练。这种方法比较灵活,可以和许多算法融合。

  5. 全面考虑影响因素。未来的预测值受许多因素影响,所以应该在基于历史数据的基础上,充分考虑各种因素,考虑得越周全,预知信息越多,预测效果一般更好。

谷歌人工智能写作项目:小发猫

神经网络预测适用范围_神经网络做回归预测

2、BP神经网络与 Modflow的预测结果对比

根据训练好的BP神经网络模型,对区内6个点2005~2015年的年沉降量进行预测(图8.36)

今天的文章神经网络预测适用范围_神经网络做回归预测分享到此就结束了,感谢您的阅读。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
如需转载请保留出处:https://bianchenghao.cn/70924.html

(0)
编程小号编程小号

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注